Synthesis of CoFe2O4 Nanoparticles: The Effect of Ionic Strength, Concentration, and Precursor Type on Morphology and Magnetic Properties - Publikacja - MOST Wiedzy

Wyszukiwarka

Synthesis of CoFe2O4 Nanoparticles: The Effect of Ionic Strength, Concentration, and Precursor Type on Morphology and Magnetic Properties

Abstrakt

The present study highlights the effect of metal precursor types (SO4 2¯, Cl¯, and NO3¯), their concentration, and the influence of ionic strength of reaction environment on the morphology, surface, and magnetic properties of CoFe2O4 particles. The magnetic nanoparticles were obtained by chemical coprecipitation in alkaline medium at increasing metal concentration in the range of 0.0425 mol·dm-3 to 0.17 mol·dm-3 and calcination temperature from 400°C to 800°C. It was found that the chemistry of precursors can be directly correlated with magnetic properties. The CoFe2O4 particles from metal sulphate precursors showed the highest saturation magnetization and the lowest coercivity. The adjustment of ionic strength in the range of 1.25–5M was achieved by adding an appropriate quantity of metal sulphates into aqueous solutions at a constant pH or by adding an appropriate quantity of NaClO5 under similar conditions. The average hydrodynamic size of CoFe2O4 increased from 46nm to 54 nm with increasing metal concentration and ionic strength. An explanation of magnetic properties, caused by ionic strength and metal concentration, is given based mainly on the reduction in repulsive forces at the particle interface and compensation of the double electric layer in the presence of anions. The observed coercivity was lower for the particles obtained in solutions with the highest ionic strength, whereas the concentration of metals and calcination temperature affected the saturation magnetization and morphology of the obtained cobalt ferrite particles.

Cytowania

  • 6

    CrossRef

  • 4

    Web of Science

  • 7

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 18 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Journal of Nanomaterials nr 2020, strony 1 - 12,
ISSN: 1687-4110
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Malinowska I., Ryżyńska Z., Mrotek E., Klimczuk T., Zielińska-Jurek A.: Synthesis of CoFe2O4 Nanoparticles: The Effect of Ionic Strength, Concentration, and Precursor Type on Morphology and Magnetic Properties// Journal of Nanomaterials -Vol. 2020, (2020), s.1-12
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1155/2020/9046219
Bibliografia: test
  1. D. S. Mathew and R. S. Juang, "An overview of the structure and magnetism of spinel ferrite nanoparticles and their syn- thesis in microemulsions," Chemical Engineering Journal, vol. 129, no. 1-3, pp. 51-65, 2007. otwiera się w nowej karcie
  2. C. Murugesan, L. Okrasa, and G. Chandrasekaran, "Structural AC conductivity impedance and dielectric study of nanocrys- talline MFe 2 O 4 (M = Mg, Co or Cu) spinel ferrites," Journal of Materials Science: Materials in Electronics, vol. 28, no. 17, pp. 13168-13175, 2017. otwiera się w nowej karcie
  3. R. Valenzuela, "Novel applications of ferrites," Physics Research International, vol. 2012, Article ID 591839, 9 pages, 2012. otwiera się w nowej karcie
  4. V. S. Kumbhar, A. D. Jagadale, N. M. Shinde, and C. D. Lokhande, "Chemical synthesis of spinel cobalt ferrite (CoFe 2 O 4 ) nano-flakes for supercapacitor application," Applied Surface Science, vol. 259, pp. 39-43, 2012. otwiera się w nowej karcie
  5. N. Sivakumar, A. Narayanasamy, B. Jeyadevan, R. J. Joseyphus, and C. Venkateswaran, "Dielectric relaxation behaviour of nanostructured Mn -Zn ferrite," Journal of Physics D: Applied Physics, vol. 41, no. 24, p. 245001, 2008. otwiera się w nowej karcie
  6. A. J. Rondinone, C. Liu, and Z. J. Zhang, "Determination of magnetic anisotropy distribution and anisotropy constant of manganese spinel ferrite nanoparticles," Journal of Physical Chemistry B, vol. 105, no. 33, pp. 7967-7971, 2001. otwiera się w nowej karcie
  7. M. Sugimoto, "The past, present, and future of ferrites," Jour- nal of the American Ceramic Society, vol. 82, no. 2, pp. 269- 280, 1999. otwiera się w nowej karcie
  8. A. Zielinska-Jurek, Z. Bielan, S. Dudziak et al., "Design and application of magnetic photocatalysts for water treatment. The effect of particle charge on surface functionality," Cata- lysts, vol. 7, no. 12, p. 360, 2017. otwiera się w nowej karcie
  9. L. Néel, "Antiferromagnetism and ferrimagnetism," Proceed- ings of the Physical Society Section A, vol. 65, no. 11, pp. 869- 885, 1952. otwiera się w nowej karcie
  10. L. Ai and J. Jiang, "Influence of annealing temperature on the formation, microstructure and magnetic properties of spinel nanocrystalline cobalt ferrites," Current Applied Physics, vol. 10, no. 1, pp. 284-288, 2010. otwiera się w nowej karcie
  11. M. Houshiar, F. Zebhi, Z. J. Razi, A. Alidoust, and Z. Askari, "Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: A comparison study of size, structural, and magnetic properties," Journal of Magnetism and Magnetic Materials, vol. 371, pp. 43-48, 2014. otwiera się w nowej karcie
  12. A. Pradeep, P. Priyadharsini, and G. Chandrasekaran, "Sol-gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study," Journal of Magnetism and Magnetic Materials, vol. 320, no. 21, pp. 2774-2779, 2008. otwiera się w nowej karcie
  13. L. Wang, J. Li, Y. Wang, L. Zhao, and Q. Jiang, "Adsorption capability for Congo red on nanocrystalline MFe2O4 (M = Mn, Fe, Co, Ni) spinel ferrites," Chemical Engineering Journal, vol. 181-182, pp. 72-79, 2012. otwiera się w nowej karcie
  14. V. Pillai and D. O. Shah, "Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions," Journal of Magnetism and Magnetic Materials, vol. 163, no. 1-2, pp. 243-248, 1996. otwiera się w nowej karcie
  15. J. Wagner, T. Autenrieth, and R. Hempelmann, "Core shell particles consisting of cobalt ferrite and silica as model ferro- fluids [CoFe2O4-SiO2 core shell particles]," Journal of Magne- tism and Magnetic Materials, vol. 252, pp. 4-6, 2002. otwiera się w nowej karcie
  16. S. Ammar, A. Helfen, N. Jouini et al., "Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium," Journal of Materials Chemistry, vol. 11, no. 1, pp. 186-192, 2001. otwiera się w nowej karcie
  17. R. Ianoş, M. Bosca, and R. Lazău, "Fine tuning of CoFe 2 O 4 properties prepared by solution combustion synthesis," Ceramics International, vol. 40, no. 7, pp. 10223-10229, 2014. otwiera się w nowej karcie
  18. Y. Zhao, Y. Xu, J. Zeng et al., "Low-crystalline mesoporous CoFe 2 O 4 /C composite with oxygen vacancies for high energy density asymmetric supercapacitors," RSC Advances, vol. 7, no. 87, pp. 55513-55522, 2017. otwiera się w nowej karcie
  19. B. J. Rani, M. Ravina, B. Saravanakumar et al., "Ferrimagne- tism in cobalt ferrite (CoFe 2 O 4 ) nanoparticles," Nano-Struc- tures & Nano-Objects, vol. 14, pp. 84-91, 2018. otwiera się w nowej karcie
  20. M. G. Naseri, E. B. Saion, H. A. Ahangar, A. H. Shaari, and M. Hashim, "Simple synthesis and characterization of cobalt ferrite nanoparticles by a thermal treatment method," Journal of Nanomaterials, vol. 2010, Article ID 907686, 8 pages, 2010.
  21. R. Ianoș, "Highly sinterable cobalt ferrite particles prepared by a modified solution combustion synthesis," Materials Letters, vol. 135, pp. 24-26, 2014. otwiera się w nowej karcie
  22. B. Babić-Stojić, V. Jokanović, D. Milivojević et al., "Magnetic and structural studies of CoFe 2 O 4 nanoparticles suspended in an organic liquid," Journal of Nanomaterials, vol. 2013, Article ID 741036, 9 pages, 2013. otwiera się w nowej karcie
  23. L. Kumar, P. Kumar, A. Narayan, and M. Kar, "Rietveld anal- ysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite," International Nano Letters, vol. 3, no. 1, 2013. otwiera się w nowej karcie
  24. V. Bartůněk, D. Sedmidubský, Š. Huber, M. Švecová, P. Ulbrich, and O. Jankovský, "Synthesis and properties of nanosized stoichiometric cobalt ferrite spinel," Materials, vol. 11, no. 7, p. 1241, 2018. otwiera się w nowej karcie
  25. G. Lefevre, "In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides," Advances in Colloid and Interface Science, vol. 107, no. 2-3, pp. 109-123, 2004. otwiera się w nowej karcie
  26. L. Frolova, A. Derimova, and T. Butyrina, "Structural and magnetic properties of cobalt ferrite nanopowders synthesis using contact non-equilibrium plasma," Acta Physica Polonica A, vol. 133, no. 4, pp. 1021-1023, 2018. otwiera się w nowej karcie
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 36 razy

Publikacje, które mogą cię zainteresować

Meta Tagi