Synthesis, thermal, structural and electrical properties of vanadium-doped lithium-manganese-borate glass and nanocomposites - Publikacja - MOST Wiedzy

Wyszukiwarka

Synthesis, thermal, structural and electrical properties of vanadium-doped lithium-manganese-borate glass and nanocomposites

Abstrakt

A glassy sample with a nominal formula LiMn1−3x/2VxBO3 (where x = 0.05) was synthesised using the melt-quenching method. Material was characterised by differential thermal analysis (DTA), X-ray diffactometry (XRD) at room temperature and as a function of temperature (HT-XRD), X-ray photoelectron spectroscopy (XPS), impedance spectroscopy (IS) and scanning electron microscopy (SEM). Dependences of glass transition and crystallisation temperatures on the heating rate in DTA experiments were determined. The initial value of electrical conductivity of the glass was 1.4×10−15 Scm−1. It was significantly increased by a proper thermal nanocrystallisation. The maximum value was higher by 6 orders of magnitude and reached 2.6×10−9 Scm−1 at room temperature. Expected crystalline phases (i.e. monoclinic and hexagonal LiMnBO3) upon heating were identified and assigned to thermal events observed with DTA. Microstructure of nanocrystalline samples observed by SEM revealed nanocrystalline grains noticeably smaller than 100 nm. Results explaining nanocrystallisation process are coherent.

Cytowania

  • 2

    CrossRef

  • 2

    Web of Science

  • 2

    Scopus

Autorzy (6)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 12 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
IONICS nr 26, strony 1275 - 1283,
ISSN: 0947-7047
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Jarocka A., Michalski P., Ryl J., Wasiucionek M., Garbarczyk J., Pietrzak T.: Synthesis, thermal, structural and electrical properties of vanadium-doped lithium-manganese-borate glass and nanocomposites// IONICS -Vol. 26, (2020), s.1275-1283
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s11581-019-03229-5
Bibliografia: test
  1. Pietrzak TK, Wasiucionek M, Michalski PP, Kaleta A, Garbarczyk JE (2016) Highly conductive cathode materials for Li-ion batteries prepared by thermal nanocrystallization of selected oxide glasses. Mater Sci Eng B 213:140-147 otwiera się w nowej karcie
  2. Pietrzak TK, Garbarczyk JE, Wasiucionek M, Nowiński JL (2016) Nanocrystallization in vanadate-phospate and lithium-iron- vanadate-phosphate glasses. Phys Chem Glasses: Eur J Glass Sci Technol, Part B 57:113-124 otwiera się w nowej karcie
  3. Pietrzak TK, Garbarczyk JE, Gorzkowska I, Wasiucionek M, Nowiński JL, Gierlotka S, Joźwiak P (2009) Electrical properties vs. microstructure of nanocrystallized V 2 O 5 -P 2 O 5 glasses. J Power Sources 194:73-80 otwiera się w nowej karcie
  4. Garbarczyk JE, Pietrzak TK, Wasiucionek M, Kaleta A, Dorau A, Nowiński JL (2015) High electronic conductivity in nanostruc- tured materials based on lithium-iron-vanadate-phosphate glasses. Solid State Ionics 272:53-59 otwiera się w nowej karcie
  5. Pietrzak TK, Wasiucionek M, Gorzkowska I, Nowiński JL, Gar- barczyk JE (2013) Novel vanadium-doped olivine-like nano- materials with high electronic conductivity. Solid State Ionics 251:40-46 otwiera się w nowej karcie
  6. Michalski PP, Pietrzak TK, Nowiński JL, Wasiucionek M, Garbarczyk JE (2017) Novel nanocrystalline mixed conductors based on LiFeBO 3 glass. Solid State Ionics 302:40-44 otwiera się w nowej karcie
  7. Hautier G, Jain A, Chen H, Moore C, Ong SP, Ceder G (2011) Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J Mater Chem 21:17147-17153 otwiera się w nowej karcie
  8. Kim JC, Moore CJ, Kang B, Hautier G, Jain A, Ceder G (2011) Synthesis and electrochemical properties of monoclinic LiMnBO 3 as a Li intercalation material. J Electrochem Soc 158(3):A309- A315 otwiera się w nowej karcie
  9. Le Roux B, Bourbon C, Lebedev OI, Colin J-F, Pralong V (2015) Synthesis and characterization of the LiMnBO 3 -LiCoBO 3 solid solution and its use as a lithium-ion cathode material. Inorg Chem 54:5273-5279
  10. Legagneur V, An Y, Mosbah A, Portal R, Le Gal La Salle A, Verbaere A, Guyomard D, Piffard Y (2001) LiMBO 3 (M=Mn, Fe, Co): synthesis, crystal structure and lithium deinsertion / insertion properties. Solid State Ionics 139:37-46 otwiera się w nowej karcie
  11. Ma R, Shao L, Wu K, Lao M, Shui M, Chen C, Wang D, Long N, Ren Y, Shu J (2013) Electrochemical behaviors of hexagonal LiMnBO 3 as lithium storage host material for lithium- ion batteries. Ceram Int 39:9309-9317 otwiera się w nowej karcie
  12. Kim JC, Li X, Moore CJ, Bo S-H, Khalifah PG, Grey CP, Ceder G (2014) Analysis of charged state stability for monoclinic LiMnBO 3 cathode. Chem Mater 26:4200-4206 otwiera się w nowej karcie
  13. Michalski PP, Gołȩbiewska A, Trébosc J, Lafon O, Pietrzak TK, Ryl J, Nowiński JL, Wasiucionek M, Garbarczyk JE (2019) Properties of LiMnBO 3 glasses and nanostructured glass- ceramics. Solid State Ionics 334:88-94 otwiera się w nowej karcie
  14. Hong J, Wang CS, Chen X, Upreti S, Whittingham MS (2009) Vanadium Modified LiFePO 4 Cathode for Li-Ion Batteries. Electrochem Solid-State Lett 12(2):A33-A38 otwiera się w nowej karcie
  15. Omenya F, Chernova NA, Upreti S, Zavalij PY, Nam K-W, Yang X-Q, Whittingham MS (2011) Can vanadium be substituted into LiFePO 4 ? Chem Mater 23:4733-4740 otwiera się w nowej karcie
  16. Hirose K, Honma T, Benino Y, Komatsu T (2007) Glass-ceramics with LiFePO 4 crystals and crystal line patterning in glass by YAG laser irradiation. Solid State Ionics 178:801-807 otwiera się w nowej karcie
  17. Siuzdak K, Szkoda M, Lisowska-Oleksiak A, Karczewski J, Ryl J (2016) Highly stable organic-inorganic junction composed of hydrogenated titania nanotubes infiltrated by a conducting polymer. RSC Adv 6:33101-33110 otwiera się w nowej karcie
  18. Wysocka J, Krakowiak S, Ryl J (2017) Evaluation of citric acid corrosion inhibition efficiency and passivation kinetics for aluminium alloys in alkaline media by means of dynamic impedance monitoring. Electrochimica Acta 258:1463-1475 otwiera się w nowej karcie
  19. Pietrzak TK (2019) Multi-device software for impedance spec- troscopy measurements with stabilization in low and high temper- ature ranges working under Linux environment. Ionics 25:2445- 2452 otwiera się w nowej karcie
  20. Michalski PP, Pietrzak TK, Nowiński JL, Wasiucionek M, Garbar- czyk JE (2016) Dependence of a glass transition temperature on a heating rate in DTA experiments for glasses containing transition metal oxides. J Non-Cryst Solids 443:155-161 otwiera się w nowej karcie
  21. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29(11):1702-1706 otwiera się w nowej karcie
  22. Lasocka M (1976) The effect of scanning rate on glass transition temperature of splat-cooled Te 85 Ge 15 . Mater Sci Eng 23:173-177 otwiera się w nowej karcie
  23. Austin IG, Mott NF (2014) Polarons in crystalline and non- crystalline materials 18:41-102 otwiera się w nowej karcie
  24. Pietrzak TK, Pawliszak Ł, Michalski PP, Wasiucionek M, Garbar- czyk JE (2014) Highly conductive 90V 2 O 5 · 10 P 2 O 5 nanocrys- talline cathode materials for lithium-ion batteries. Procedia Engi- neering 98:28-35 otwiera się w nowej karcie
  25. Chen W, Zhang H, Zhang XG, Wu L, Liu J, Liu S, Zhong S (2018) Synthesis and electrochemical performance of carbon- coated LiMnBO 3 as cathode materials for lithium-ion batteries. Ionics 24:73-81 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 21 razy

Publikacje, które mogą cię zainteresować

Meta Tagi