Tailoring the Size and Shape—New Path for Ammonium Metavanadate Synthesis - Publikacja - MOST Wiedzy


Tailoring the Size and Shape—New Path for Ammonium Metavanadate Synthesis


Ammonium metavanadate, NH4VO3, plays an important role in the preparation of vanadium oxides and other ammonium compounds, such as NH4V3O8, (NH4)2V3O8, and NH4V4O10, which were found to possess interesting electrochemical properties. In this work, a new route for the synthesis of NH4VO3 is proposed by mixing an organic ammonium salt and V2O5 in a suitable solvent. The one-step procedure is carried out at room temperature. Additionally, the need for pH control and use of oxidants necessary in known methods is eliminated. The mechanism of the NH4VO3 formation is explained. It is presented that it is possible to tailor the morphology and size of the obtained NH4VO3 crystals, depending on the combination of reagents. Nano- and microcrystals of NH4VO3 are obtained and used as precursors in the hydrothermal synthesis of higher ammonium vanadates. It is proven that the size of the precursor particles can significantly affect the physical and chemical properties of the resulting products.


  • 5


  • 5

    Web of Science

  • 5


Cytuj jako

Pełna treść

pobierz publikację
pobrano 32 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
Materials nr 12, strony 1 - 11,
ISSN: 1996-1944
Rok wydania:
Opis bibliograficzny:
Prześniak-Welenc M., Nadolska M., Kościelska B., Sadowska K.: Tailoring the Size and Shape—New Path for Ammonium Metavanadate Synthesis// Materials -Vol. 12,iss. 20 (2019), s.1-11
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ma12203446
Bibliografia: test
  1. Liu, Y.; Xu, M.; Shen, B.; Xia, Z.; Li, Y.; Wu, Y.; Li, Q. Facile synthesis of mesoporous NH 4 V 4 O 10 nanoflowers with high performance as cathode material for lithium battery. J. Mater. Sci. 2018, 53, 2045-2053. [CrossRef] otwiera się w nowej karcie
  2. Mai, L.Q.; Lao, C.S.; Hu, B.; Zhou, J.; Qi, Y.Y.; Chen, W.; Gu, E.D.; Wang, Z.L. Synthesis and electrical transport of single-crystal NH 4 V 3 O 8 nanobelts. J. Phys. Chem. B 2006, 110, 18138-18141. [CrossRef] [PubMed] otwiera się w nowej karcie
  3. Chen, Q.; Xia, Q.; Xu, Y.; Wang, P.; Tan, Q. NH 4 V 4 O 10 micro-flowers as cathode material for high performance hybrid magnesium-lithium-ion batteries. Mater. Lett. 2019, 247, 178-181. [CrossRef] otwiera się w nowej karcie
  4. Wang, H.; Ren, Y.; Wang, W.; Huang, X.; Huang, K.; Wang, Y.; Liu, S. NH 4 V 3 O 8 nanorod as a high performance cathode material for rechargeable Li-ion batteries. J. Power Sources 2012, 199, 315-321. [CrossRef] otwiera się w nowej karcie
  5. Ma, Y.; Ji, S.; Zhou, H.; Zhang, S.; Li, R.; Zhu, J.; Li, W.; Guo, H.; Jin, P. Synthesis of novel ammonium vanadium bronze (NH 4 ) 0.6 V 2 O 5 and its application in Li-ion battery. RSC Adv. 2015, 5, 90888-90894. [CrossRef] otwiera się w nowej karcie
  6. Cheng, Y.; Huang, J.; Li, J.; Cao, L.; Xu, Z.; Wu, J.; Cao, S.; Hu, H. Structure-controlled synthesis and electrochemical properties of NH 4 V 3 O 8 as cathode material for Lithium ion batteries. Electrochim. Acta 2016, 212, 217-224. [CrossRef] otwiera się w nowej karcie
  7. Tian, X.; Xu, X.; He, L.; Wei, Q.; Yan, M.; Xu, L.; Zhao, Y.; Yang, C.; Mai, L. Ultrathin pre-lithiated V 6 O 13 nanosheet cathodes with enhanced electrical transport and cyclability. J. Power Sources 2014, 255, 235-241. [CrossRef] otwiera się w nowej karcie
  8. Vo, TN.; Kim, H.; Hur, J.; Choi, W.; Kim, T. Surfactant-assisted ammonium vanadium oxide as a superior cathode for calcium-ion batteries. J. Mater. Chem. A 2018, 6, 22645-22654. [CrossRef] otwiera się w nowej karcie
  9. Esparcia, E.; Chae, M.; Ocon, J.; Hong, S. Ammonium Vanadium Bronze (NH 4 V 4 O 10 ) as a High-Capacity Cathode Material for Nonaqueous Magnesium-Ion Batteries. Chem. Mater. 2018, 30, 3690-3696. [CrossRef] otwiera się w nowej karcie
  10. Wei, T.; Li, Q.; Yang, G.; Wang, C. Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH 4 ) 2 V 10 O 25 ·8H 2 O nanobelt. J. Mater. Chem. A 2018, 6, 20402-20410. [CrossRef] otwiera się w nowej karcie
  11. Yang, G.; Wei, T.; Wang, C. Self-Healing Lamellar Structure Boosts Highly Stable Zinc-Storage Property of Bilayered Vanadium Oxides. ACS Appl. Mater. Interfaces 2018, 1041, 35079-35089. [CrossRef] [PubMed] otwiera się w nowej karcie
  12. Lai, J.; Zhu, H.; Zhu, X.; Koritala, H.; Wang, Y. Interlayer-Expanded V 6 O 13 n H 2 O Architecture Constructed for an Advanced Rechargeable Aqueous Zinc-Ion Battery. ACS Appl. Energy Mater. 2019, 2, 1988-1996. [CrossRef] otwiera się w nowej karcie
  13. Sonar, S.S.; Kategaonkar, A.H.; Ware, M.N.; Gill, C.H.; Shingate, B.B.; Shingare, M.S. Ammonium metavanadate: An effective catalyst for synthesis of α hydroxyphosphonates. Arkivoc 2009, 2, 138-148. otwiera się w nowej karcie
  14. Si, Y.; Xiong, Z.; Zheng, X.; Li, M.; Yang, Q. Improving the Anti-Corrosion Ability of Anodization Film of AZ31B Magnesium Alloy by Addition of NH 4 VO 3 in the Electrolyte. Int. J. Electrochem. Sci. 2016, 11, 3261-3268. [CrossRef] otwiera się w nowej karcie
  15. Brauer, G. Handbook of Preparative Inorganic Chemistry, 2nd ed.; Brauer, G., Ed.; Academic Press Inc.: New York, NY, USA, 1965. otwiera się w nowej karcie
  16. Du, G.; Sun, Z.; Xian, Y.; Jing, H.; Chen, H.; Yin, D. The nucleation kinetics of ammonium metavanadate precipitated by ammonium chloride. J. Cryst. Growth 2016, 441, 117-123. [CrossRef] otwiera się w nowej karcie
  17. Mandhane, P.G.; Joshi, R.S.; Ghawalkar, A.R.; Jadhav, G.R.; Gill, C.H. Ammonium metavanadate: A mild and efficient catalyst for the synthesis of coumarins. Bull. Korean Chem. Soc. 2009, 30, 2969-2972. [CrossRef] otwiera się w nowej karcie
  18. Jadhav, G.R.; Shaikh, M.U.; Kale, R.P.; Gill, C.H. Ammonium metavanadate: A novel catalyst for synthesis of 2-substituted benzimidazole derivatives. Chin. Chem. Lett. 2009, 20, 292-295. [CrossRef] otwiera się w nowej karcie
  19. Niralwad, K.S.; Shingate, B.B.; Shingare, M.S. Microwave-assisted one-pot synthesis of octahydroquinazolinone derivatives using ammonium metavanadate under solvent-free condition. Tetrahedron Lett. 2010, 51, 3616-3618. [CrossRef] otwiera się w nowej karcie
  20. Wu, D.; Wang, C.; Chao, Y.; He, P.; Ma, J. Porous bowl-shaped VS 2 nanosheets/graphene composite for high-rate lithium-ion storage. J. Eng. Chem. 2020, 43, 24-32. [CrossRef] otwiera się w nowej karcie
  21. Xie, X.; Mao, M.; Qi, S.; Ma, J. ReS 2 -Based electrode materials for alkali-metal ion batteries. Cryst. Eng. Commun. 2019, 21, 3755-3769. [CrossRef] otwiera się w nowej karcie
  22. Rui, X.; Lu, Z.; Yu, H.; Yang, D.; Hng, H.H.; Lim, T.M.; Yan, Q. Ultrathin V 2 O 5 nanosheet cathodes: Realizing ultrafast reversible lithium storage. Nanoscale 2013, 5, 556-560. [CrossRef] [PubMed] otwiera się w nowej karcie
  23. Heyns, A.M.; Venter, M.W.; Range, K.J. The vibrational spectra of NH 4 VO 3 at elevated temperatures and pressures. Z. Naturforsch. B 1987, 42, 843-852. [CrossRef] otwiera się w nowej karcie
  24. Onodera, S.; Ikegami, Y. Infrared and Raman spectra of ammonium, potassium, rubidium, and cesium metavanadates. Inorg. Chem. 1980, 19, 615-618. [CrossRef] otwiera się w nowej karcie
  25. Bruyère, V.I.; Morando, P.J.; Blesa, M.A. The dissolution of vanadium pentoxide in aqueous solutions of oxalic and mineral acids. J. Colloid Interface Sci. 1999, 209, 207-214. [CrossRef] [PubMed] otwiera się w nowej karcie
  26. Zhang, K.F.; Zhang, G.Q.; Liu, X.; Su, Z.; Li, H.L. Large scale hydrothermal synthesis and electrochemistry of ammonium vanadium bronze nanobelts. J. Power Sources 2006, 157, 528-532. [CrossRef] otwiera się w nowej karcie
  27. Wang, N.; Chen, W.; Mai, L.; Dai, Y. Selected-control hydrothermal synthesis and formation mechanism of 1D ammonium vanadate. J. Solid State Chem. 2008, 181, 652-657. [CrossRef] otwiera się w nowej karcie
  28. Vernardou, D.; Apostolopoulou, M.; Louloudakis, D.; Katsarakis, N.; Koudoumas, E. Hydrothermal growth and characterization of shape-controlled NH 4 V 3 O 8 . New J. Chem. 2014, 38, 2098-2104. [CrossRef] otwiera się w nowej karcie
  29. Kou, L.; Cao, L.; Huang, J.; Yang, J.; Wang, Y. Facile synthesis of NH 4 V 3 O 8 nanoflowers as advanced cathodes for high performance of lithium ion battery. J. Mater. Sci. Mater. Electron. 2018, 29, 4830-4834. [CrossRef] © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Źródła finansowania:
Politechnika Gdańska

wyświetlono 172 razy

Publikacje, które mogą cię zainteresować

Meta Tagi