The computational complexity of the backbone coloring problem for bounded-degree graphs with connected backbones - Publikacja - MOST Wiedzy

Wyszukiwarka

The computational complexity of the backbone coloring problem for bounded-degree graphs with connected backbones

Abstrakt

Given a graph G, a spanning subgraph H of G and an integer λ>=2, a λ-backbone coloring of G with backbone H is a vertex coloring of G using colors 1, 2, ..., in which the color difference between vertices adjacent in H is greater than or equal to lambda. The backbone coloring problem is to find such a coloring with maximum color that does not exceed a given limit k. In this paper, we study the backbone coloring problem for bounded-degree graphs with connected backbones and we give a complete computational complexity classification of this problem. We present a polynomial algorithm for optimal backbone coloring for subcubic graphs with arbitrary backbones. We also prove that the backbone coloring problem for graphs with arbitrary backbones and with fixed maximum degree (at least 4) is NP-complete. Furthermore, we show that for a special case of graphs with fixed maximum degree at least 5 and λ>=4 the problem remains NP-complete even for spanning tree backbones.

Cytowania

  • 1

    CrossRef

  • 1

    Web of Science

  • 1

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
INFORMATION PROCESSING LETTERS nr 115, wydanie 2, strony 232 - 236,
ISSN: 0020-0190
Język:
angielski
Rok wydania:
2015
Opis bibliograficzny:
Janczewski R., Turowski K.: The computational complexity of the backbone coloring problem for bounded-degree graphs with connected backbones// INFORMATION PROCESSING LETTERS. -Vol. 115, iss. 2 (2015), s.232-236
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.ipl.2014.09.018
Weryfikacja:
Politechnika Gdańska

wyświetlono 20 razy

Publikacje, które mogą cię zainteresować

Meta Tagi