The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties - Publikacja - MOST Wiedzy


The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties


Bacterial nanocellulose (BNC) is a natural biomaterial with a wide range of biomedical applications. BNC contains 99 % of water which makes it too thick to be used as a bioimplant material. The aim of the work was to determine the effect of the BNC dehydration followed by rehydration on its mechanical and physicochemical properties, in the context of the use of BNC as bio-prostheses in the cardiovascular system. Dehydration involved the convection-drying at 25 and 105 °C, and the freeze-drying, while rehydration - the soaking in water. All modified BNC samples had reduced thickness, and results obtained from FT-IR, XRD, and SEM analysis revealed that 25 °C BNC convection-dried after soaking in water was characterized by the highest: tensile strength (17.4 MPa), thermal stability (253 °C), dry mass content (4.34 %) and Iα/Iβ ratio (1.10). Therefore, 25 °C convection-dried BNC followed by soaking in water can be considered as a material suitable for cardio- vascular implants.


  • 1 1


  • 9

    Web of Science

  • 1 1


Cytuj jako

Pełna treść

pobierz publikację
pobrano 62 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
CARBOHYDRATE POLYMERS nr 236, strony 116023 - 116032,
ISSN: 0144-8617
Rok wydania:
Opis bibliograficzny:
Stanisławska A., Staroszczyk H., Szkodo M.: The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties// CARBOHYDRATE POLYMERS -Vol. 236, (2020), s.116023-116032
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.carbpol.2020.116023
Bibliografia: test
  1. Abidi, N., Cabrales, L., & Hequet, E. (2010). Fourier transform infrared spectroscopic approach to the study of the secondary cell wall development in cotton fiber. Cellulose, 17, 309-320. otwiera się w nowej karcie
  2. ASTM (2001). Standard test method for tensile properties of thin plastic sheeting. D 882-00. Annual book of ASTM 2001. Philadelphia, PA: American Society for Testing and Materials. otwiera się w nowej karcie
  3. Ben-Bassad, A., Burner, R., Shoemaker, S., Aloni, Y., Wong, H., Johnson, D. C., et al. (2002). Reticulated cellulose producing Acetobacter strains. US 6,426,002 B.
  4. Carrilo, F., Colom, X., Suñol, J. J., & Saurina, J. (2004). Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. European Polymer Journal, 40, 2229-2234. otwiera się w nowej karcie
  5. Dawidowska, K., & Stanisławska, A. (2015). Influence of preservative on the tensile strength of the tissue of porcine circulatory system. Advanced Materials Science, 15, 67-75. otwiera się w nowej karcie
  6. de Oliveira Barud, H. G., da Silva, R. R., da Silva Barud, H., Tercjak, A., Gutierrez, J., Lustri, W. R., et al. (2016). A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydrate Polymers, 153, 406-420. https://doi. org/10.1016/j.carbpol.2016.07.059. otwiera się w nowej karcie
  7. Gałas, E., & Krystynowicz, A. (1993). Sposób wytwarzania celulozy bakteryjnej. PL 171952 B1.
  8. Gama, M., Gatenholm, P., & Klemm, D. (2017). Bacterial nanocellulose: A sophisticated multifunctional material. Boca Raton, London, New York: CRC Press. otwiera się w nowej karcie
  9. Halib, N., Amin, M. C. I. M., & Ahmad, I. (2012). Physicochemical properties and char- acterization of nata de coco from local food industries as a source of cellulose. Sains Malaysiana, 41, 205-211.
  10. Hishikawa, Y., Togawa, E., & Kondo, T. (2017). Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized FTIR spectra. ACS Omega, 2, 1469-1476. otwiera się w nowej karcie
  11. Hsieh, Y. C., Yano, H. N. M., & Eichhorn, S. J. (2008). An estimation of the Young's modulus of bacterial cellulose filaments. Cellulose, 15, 507-513. 1007/s10570-008-9206-8. otwiera się w nowej karcie
  12. Hu, W., Chen, S., Yang, J., Li, Z., & Wang, H. (2014). Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydrate Polymers, 101, 1043-1060. https:// otwiera się w nowej karcie
  13. Hurtubise, F., & Krassig, H. (1960). Classification of fine structural characteristics in cellulose by infrared spectroscopy. Analytical Chemistry, 32, 177-181. https://doi. org/10.1021/ac60158a010. otwiera się w nowej karcie
  14. Kacuráková, M., Smith, A. C., Gidley, M. J., & Wilson, R. H. (2002). Molecular inter- actions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohydrate Research, 337, 1145-1153. S0008-6215(02)00102-7. otwiera się w nowej karcie
  15. Kanjanamosit, N., Muangnapoh, C., & Phisalaphong, M. (2010). Biosynthesis and char- acterization of bacteria cellulose-alginate film. Journal of Applied Polymer Sciences, 115, 1581-1588. otwiera się w nowej karcie
  16. Katepetch, C., Rujiravanit, R., & Tamura, H. (2013). Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose, 20, 1275-1292. otwiera się w nowej karcie
  17. Kim, D. Y., Nishiyam, Y., & Kuga, S. (2002). Surface acetylation of bacterial cellulose. Cellulose, 9, 361-367. otwiera się w nowej karcie
  18. Klemm, D., Schummann, D., Udhardt, U., & Marsch, S. (2001). Bacterial synthesized cellulose -Artificial blood vessels for microsurgery. Progress in Polymer Science, 26, 1561-16003. otwiera się w nowej karcie
  19. Kljun, A., Benians, T. A. S., Goubet, F., Meulewaeter, F., Knox, J. P., & Blackburn, R. S. (2011). Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes. Biomacromolecules, 12, 4121-4126. otwiera się w nowej karcie
  20. Kołaczkowska, M., Siondalski, P., Kowalik, M. M., Pęksa, R., Długa, A., Zając, W., et al. (2019). Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E25 as a new biological implant. Materials Science & Engineering C: Materials for Biological Applications, 97, 302-312. 1016/j.msec.2018.12.016. otwiera się w nowej karcie
  21. Kondo, T., Rytczak, P., & Bielecki, S. (2016). Bacterial nanocellulose characterization. In F. Gama, F. Dourado, & S. Bielecki (Eds.). Bacterial nanocellulose. From biotechnology to bio-economy (pp. 59-71). Amsterdam, Netherlands: Elsevier. otwiera się w nowej karcie
  22. Krystynowicz, A., Czaja, W., & Bielecki, S. (2003). Sposób otrzymywania celulozy bakter- yjnej. PL 212003 B1.
  23. Liu, Y., Gamble, G., & Thibodeaux, D. (2010). Development of Fourier transform infrared spectroscopy in direct, non-destructive, and rapid determination of cotton fiber maturity. Applied Spectroscopy, 64, 1355-1363. 0040517511410107. otwiera się w nowej karcie
  24. Maréchal, Y., & Chanzy, H. (2000). The hydrogen bond network in I β cellulose as ob- served by infrared spectrometry. Journal of Molecular Structure, 523, 183-196. otwiera się w nowej karcie
  25. McKenna, B. A., Mikkelsen, D., Wehr, J. B., Gidley, M. J., & Menzies, N. W. (2009). Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524. Cellulose, 16, 1047-1055. otwiera się w nowej karcie
  26. Moon, R. J., Martini, A., Nairn, J., Siomonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40, 3941-3994. otwiera się w nowej karcie
  27. Nada, A.-A. M. A., Kamel, S., & El-Sakhawy, M. (2000). Thermal behaviour and infrared spectroscopy of cellulose carbamates. Polymer Degradation and Stability, 70, 347-355. otwiera się w nowej karcie
  28. Nelson, M. L., & O'Connor, R. T. (1964). Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of lattices types I, II, III, and of amorphous cellulose. Journal of Applied Polymer Science, 8, 1311-1324. https://doi. org/10.1002/app.1964.070080322. otwiera się w nowej karcie
  29. Oh, S. Y., Yoo, D. I., Shin, Y., Kim, H. C., Kim, H. Y., Chung, Y. S., et al. (2005). Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Polymers, 340, 2376-2391. otwiera się w nowej karcie
  30. Phisalaphong, M., & Jatupaiboon, N. (2008). Biosynthesis and characterization of bac- teria cellulose-chitosan film. Carbohydrates Polymers, 74, 482-488. 10.1016/j.carbpol.2008.04.004. otwiera się w nowej karcie
  31. Picheth, G. F., Pirich, C. L., Sierakowski, M. R., Woehl, M. A., Sakakibara, C. N., de Souza, C. F., et al. (2017). Bacterial cellulose in biomedical applications: A review. International Journal of Biological Macromolecules, 104(Pt A), 97-106. 10.1016/j.ijbiomac.2017.05.171. otwiera się w nowej karcie
  32. Saibuatong, O. A., & Phisalaphong, M. (2018). Novo aloe vera-bacterial cellulose com- posite film from biosynthesis. Carbohydrates Polymers, 79, 455-460. 10.1016/j.carbpol.2009.08.039. otwiera się w nowej karcie
  33. Saska, S., Teixeira, L. N., de Oliveir, P. T., Gaspar, A. M. M., Ribeiro, S. J. L., Messaddeq, Y., et al. (2012). Bacterial cellulose-collagen nanocomposite for bone tissue en- gineering. Journal of Material Chemistry, 22, 22102-22112. C2JM33762B. otwiera się w nowej karcie
  34. Segal, L., Creely, J. J., Martin, A., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray dif- fractometer. Textile Research Journal, 29, 786-794. 004051755902901003. otwiera się w nowej karcie
  35. Shi, X., Cui, Q., Zheng, Y., Peng, S., Wang, G., & Xie, Y. (2014). Effect of selective oxi- dation of bacterial cellulose on degradability in phosphate buffer solution and their affinity for epidermal cell attachment. RSC Advanced, 4, 60749-60756. https://doi. org/10.1039/C4RA10226F. otwiera się w nowej karcie
  36. Sugiyama, Perrson, J., & Chanzy, H. (1991). Combiner infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules, 24, 2461-2466. otwiera się w nowej karcie
  37. Taisa, R., Stumpf, Xiuying, Y., Jingchang, Z., & Xudong, C. (2018). In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Materials Science and Engineering C, 82, 372-383. 121. otwiera się w nowej karcie
  38. Ul-Islam, M., Khan, T., & Park, J. K. (2012). Nanoreinforced bacterial cellulose-- montmorillonite composites for biomedical applications. Carbohydrate Polymers, 89, 1189-1197. otwiera się w nowej karcie
  39. Ul-Islam, M., Khattak, W. A., Kang, M., Kim, S. M., Khan, T., & Pakr, J. K. (2013). Effect of post-synthetic processing conditions on structural variations and applications of bacterial cellulose. Cellulose, 20, 253-263. 9799-9. otwiera się w nowej karcie
  40. Vasquez, A., Foresti, M. L., Cerrutti, P., & Galvagno, M. (2013). Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. Journal of Polymers and the Environment, 21, 545-554. 0541-3. otwiera się w nowej karcie
  41. Vieria, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47, 254-263. otwiera się w nowej karcie
  42. Wang, J., Tavakoli, J., & Tang, T. (2019). Bacterial cellulose production, properties and applications with different culture methods -A review. Carbohydrate Polymers, 219, 63-76. otwiera się w nowej karcie
  43. Yan, Z., Chen, S., Wang, H., Wang, B., & Jiang, J. (2008). Biosynthesis of bacterial cel- lulose/multi-walled carbon nanotubes in agitated culture. Carbohydrate Polymers, 74, 659-665. otwiera się w nowej karcie
  44. Yang, G., Xie, J. J., Hong, F., Cao, Z. J., & Yang, X. X. (2012). Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: Effect of fermentation carbon sources of bacterial cellulose. Carbohydrate Polymers, 87, 839-845. https:// otwiera się w nowej karcie
  45. Yano, S., Maeda, H., Nakajima, M., Hagiwara, T., & Sawaguchi, T. (2008). Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose, 15, 111-120. otwiera się w nowej karcie
  46. Zhijiang, C., & Guang, Y. (2011). Bacterial cellulose/collagen composite: Characterization and first evaluation of cytocompatibility. Journal of Applied Polymer Science, 120, 2938-2944. otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 39 razy

Publikacje, które mogą cię zainteresować

Meta Tagi