The effect of morphology and crystalline structure of Mo/MoO3 layers on photocatalytic degradation of water organic pollutants - Publikacja - MOST Wiedzy

Wyszukiwarka

The effect of morphology and crystalline structure of Mo/MoO3 layers on photocatalytic degradation of water organic pollutants

Abstrakt

Molybdenum oxide layers were formed by anodization of the Mo metallic foil in a water/ethylene glycol-based electrolyte containing fluoride ions. The as-prepared, amorphous samples were annealed in air at different temperatures in a range from 100 �C to 700 �C. The crystal phase and morphology of anodized and annealed MoO3 layers were investigated using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The photoactivity of obtained materials was tested during a photocatalytic process of methylene blue (MB) decomposition. The increase of annealing temperature led to the production of films characterized by improved photocatalytic properties, with maximum photocatalytic efficiency observed for MoO3 annealed at 600 �C. The studies on the use of MoO3 as a photoelectrocatalyst for degradation of dye were performed. Furthermore, the photocatalytic activity of the MoO3 annealed at 600 �C was investigated during a photodegradation of diclofenac acting as a model pharmaceutical compound

Cytowania

  • 1 1

    CrossRef

  • 9

    Web of Science

  • 1 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 16 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
MATERIALS CHEMISTRY AND PHYSICS nr 248, strony 1 - 8,
ISSN: 0254-0584
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Szkoda M., Trzciński K., Nowak A., Gazda M., Sawczak M., Lisowska-Oleksiak A.: The effect of morphology and crystalline structure of Mo/MoO3 layers on photocatalytic degradation of water organic pollutants// MATERIALS CHEMISTRY AND PHYSICS -Vol. 248, (2020), s.1-8
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.matchemphys.2020.122908
Bibliografia: test
  1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38. otwiera się w nowej karcie
  2. S.N. Frank, A.J. Bard, S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor, Powders 81 (1977) 1484-1488, https://doi.org/10.1021/j100530a011. otwiera się w nowej karcie
  3. A. Heller, Hydrogen-evolving solar cells, Science 379 (1982) 1141-1148, https:// doi.org/10.1126/science.223.4641.1141. otwiera się w nowej karcie
  4. S. Santhosh, M. Mathankumar, S. Selva Chandrasekaran, A.K. Nanda Kumar, P. Murugan, B. Subramanian, Effect of ablation rate on the microstructure and electrochromic properties of pulsed-laser-deposited molybdenum oxide thin films, Langmuir 33 (2017) 19-33, https://doi.org/10.1021/acs.langmuir.6b02940. otwiera się w nowej karcie
  5. P.R. Huang, Y. He, C. Cao, Z.H. Lu, Impact of lattice distortion and electron doping on α-MoO 3 electronic structure, Sci. Rep. 4 (2014) 1-7, https://doi.org/10.1038/ srep07131. otwiera się w nowej karcie
  6. T.M. McEvoy, K.J. Stevenson, J.T. Hupp, X. Dang, Electrochemical preparation of molybdenum trioxide thin films: effect of sintering on electrochromic and electro insertion properties, Langmuir 19 (2003) 4316-4326, https://doi.org/10.1021/ la027020u. otwiera się w nowej karcie
  7. J.N. Yao, B.H. Loo, A. Fujishima, A study of the photochromic and electrochromic properties of MoO 3 thin films, Phys. Chem. 94 (1990) 13-17, https://doi.org/ 10.1002/bbpc.19900940104. otwiera się w nowej karcie
  8. I.A. de Castro, R.S. Datta, J.Z. Ou, A. Castellanos-Gomez, S. Sriram, T. Daeneke, K. Kalantar-Zadeh, Molybdenum oxides -from fundamentals to functionality, Adv. Mater. (2017) 1701619, https://doi.org/10.1002/adma.201701619, 1701619. otwiera się w nowej karcie
  9. K. Ajito, L.A. Nagahara, D.A. Tryk, K. Hashimoto, A. Fujishima, Study of the photochromic properties of amorphous MoO 3 films using Raman microscopy, J. Phys. Chem. 99 (1995) 16383-16388, https://doi.org/10.1021/j100044a028. otwiera się w nowej karcie
  10. M. Szkoda, K. Trzci� nski, M. Klein, K. Siuzdak, A. Lisowska-Oleksiak, The influence of photointercalaction and photochromism effects on the photocatalytic properties of electrochemically obtained maze-like MoO 3 microstructures, Separ. Purif. Technol. 197 (2018) 382-387, https://doi.org/10.1016/j.seppur.2018.01.033. otwiera się w nowej karcie
  11. A. Chithambararaj, N.S. Sanjini, S. Velmathi, a C. Bose, Preparation of h-MoO 3 and α-MoO 3 nanocrystals: comparative study on photocatalytic degradation of methylene blue under visible light irradiation, Phys. Chem. Chem. Phys. 15 (2013) 14761-14769, https://doi.org/10.1039/c3cp51796a. otwiera się w nowej karcie
  12. H. Zhang, L. Gao, Y. Gong, Exfoliated MoO 3 nanosheets for high-capacity lithium storage, Electrochem. Commun. 52 (2015) 67-70, https://doi.org/10.1016/j. elecom.2015.01.014. otwiera się w nowej karcie
  13. S. Alizadeh, S.a. Hassanzadeh-Tabrizi, MoO3 fibers and belts: molten salt synthesis, characterization and optical properties, Ceram. Int. 41 (2015) 10839-10843, https://doi.org/10.1016/j.ceramint.2015.05.024. otwiera się w nowej karcie
  14. M. Szkoda, K. Trzci� nski, K. Siuzdak, A. Lisowska-Oleksiak, Photocatalytical properties of maze-like MoO 3 microstructures prepared by anodization of Mo plate, Electrochim. Acta 228 (2017) 139-145, https://doi.org/10.1016/j. electacta.2017.01.064. otwiera się w nowej karcie
  15. N. Vieno, M. Sillanp€ a€ a, Fate of diclofenac in municipal wastewater treatment plant -a review, Environ. Int. 69 (2014) 28-39, https://doi.org/10.1016/j. envint.2014.03.021. otwiera się w nowej karcie
  16. J.C.G. Sousa, A.R. Ribeiro, M.O. Barbosa, M.F.R. Pereira, A.M.T. Silva, A review on environmental monitoring of water organic pollutants identified by EU guidelines, J. Hazard Mater. 344 (2018) 146-162, https://doi.org/10.1016/j. jhazmat.2017.09.058. otwiera się w nowej karcie
  17. X. Chen, W. Lei, D. Liu, J. Hao, Q. Cui, G. Zou, Synthesis and characterization of hexagonal and truncated hexagonal shaped MoO 3 nanoplates, J. Phys. Chem. C 113 (2009) 21582-21585, https://doi.org/10.1021/jp908155m. otwiera się w nowej karcie
  18. S. Chen, Y. Xiao, Y. Wang, A facile approach to prepare black TiO 2 with oxygen vacancy for enhancing photocatalytic activity, Nanomaterials 8 (2018) 245, https://doi.org/10.3390/nano8040245. otwiera się w nowej karcie
  19. S.N. Lou, N. Yap, J. Scott, R. Amal, Y.H. Ng, Influence of MoO 3 (110) crystalline plane on its self-charging photoelectrochemical properties, Sci. Rep. 4 (2014) 7428, https://doi.org/10.1038/srep07428. otwiera się w nowej karcie
  20. A. Stoyanova, R. Iordanova, M. Mancheva, Y. Dimitriev, Synthesis and structural characterization of MoO 3 phases obtained from molybdic acid by addition of HNO 3 and H 2 O 2 , J. Optoelectron. Adv. Mater. 11 (2009) 1127-1131.
  21. X. Han, Q. Kuang, M. Jin, Z. Xie, L. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties, J. Am. Chem. Soc. 131 (2009) 3152-3153, https://doi.org/10.1021/ja8092373. otwiera się w nowej karcie
  22. H. Li, J. Xing, Z. Xia, J. Chen, Preparation of extremely smooth and boron-fluorine co-doped TiO 2 nanotube arrays with enhanced photoelectrochemical and photocatalytic performance, Electrochim. Acta 139 (2014) 331-336, https://doi. org/10.1016/j.electacta.2014.06.172. otwiera się w nowej karcie
  23. C. Lu, L. Zhang, Y. Zhang, S. Liu, Electrodeposition of TiO 2 /CdSe heterostructure films and photocatalytic degradation of methylene blue, Mater. Lett. 185 (2016) 342-345, https://doi.org/10.1016/j.matlet.2016.09.017. otwiera się w nowej karcie
  24. C. F� abrega, T. Andreu, A. Cabot, J.R. Morante, Location and catalytic role of iron species in TiO 2 :Fe photocatalysts: an EPR study, J. Photochem. Photobiol. Chem. 211 (2010) 170-175, https://doi.org/10.1016/j.jphotochem.2010.03.003. otwiera się w nowej karcie
  25. D. Zhao, G. Sheng, C. Chen, X. Wang, Enhanced photocatalytic degradation of methylene blue under visible irradiation on graphene@TiO 2 dyade structure, Appl. Catal. B Environ. 111-112 (2012) 303-308, https://doi.org/10.1016/j. apcatb.2011.10.012. otwiera się w nowej karcie
  26. J. Matos, A. García, L. Zhao, M.M. Titirici, Solvothermal carbon-doped TiO 2 photocatalyst for the enhanced methylene blue degradation under visible light, Appl. Catal. Gen. 390 (2010) 175-182, https://doi.org/10.1016/j. apcata.2010.10.009. otwiera się w nowej karcie
  27. M. Szkoda, K. Trzci� nski, M. Łapi� nski, A. Lisowska-Oleksiak, Photoinduced Kþ intercalation into MoO 3 /FTO photoanode -the impact on the photoelectrochemical performance, Electrocatalysis (2019), https://doi.org/ 10.1007/s12678-019-00561-2. otwiera się w nowej karcie
  28. J. Li, L. Zheng, L. Li, Y. Xian, L. Jin, Fabrication of TiO 2 /Ti electrode by laser- assisted anodic oxidation and its application on photoelectrocatalytic degradation of methylene blue, J. Hazard Mater. 139 (2007) 72-78, https://doi.org/10.1016/j. jhazmat.2006.06.003. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 39 razy

Publikacje, które mogą cię zainteresować

Meta Tagi