The Impact of Spatiotemporal Changes in Land Development (1984–2019) on the Increase in the Runoff Coefficient in Erbil, Kurdistan Region of Iraq - Publikacja - MOST Wiedzy


The Impact of Spatiotemporal Changes in Land Development (1984–2019) on the Increase in the Runoff Coefficient in Erbil, Kurdistan Region of Iraq


Nowadays, geospatial techniques are a popular approach for estimating urban flash floods by considering spatiotemporal changes in urban development. In this study, we investigated the impact of Land Use/Land Cover (LULC) changes on the hydrological response of the Erbil basin in the Kurdistan Region of Iraq (KRI). In the studied area, the LULC changes were calculated for 1984, 1994, 2004, 2014 and 2019 using the Digital Elevation Model (DEM) and satellite images. The analysis of LULC changes showed that the change between 1984 and 2004 was slower than that between 2004 and 2019. The LULC analysis revealed a 444.4% growth in built-up areas, with a 60.4% decrease in agricultural land between 1984 and 2019. The influence of LULC on urban floods caused by different urbanization scenarios was ascertained using the HEC-GeoHMS and HEC-HMS models. Over 35 years, there was a 15% increase in the peak discharge of outflow, from 392.2 m3/sec in 1984 to 450 m3/sec in 2014, as well as the runoff volume for a precipitation probability distribution of 10%, which increased from 27.4 mm in 1984 to 30.9 mm in 2014. Overall, the probability of flash floods increased in the center of the city due to the large expansion of built-up areas.


  • 7


  • 8

    Web of Science

  • 8


Cytuj jako

Pełna treść

pobierz publikację
pobrano 43 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
Remote Sensing nr 12,
ISSN: 2072-4292
Rok wydania:
Opis bibliograficzny:
Mustafa A., Szydłowski M.: The Impact of Spatiotemporal Changes in Land Development (1984–2019) on the Increase in the Runoff Coefficient in Erbil, Kurdistan Region of Iraq// Remote Sensing -Vol. 12,iss. 8 (2020), s.1302-
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/rs12081302
Bibliografia: test
  1. Du, P.; Liu, P.; Xia, J.; Feng, L.; Liu, S.; Tan, K.; Cheng, L. Remote sensing image interpretation for urban environment analysis: Methods, system and examples. Remote Sens. 2014, 6, 9458-9474. otwiera się w nowej karcie
  2. Hussein, K.; Alkaabi, K.; Ghebreyesus, D.; Liaqat, M.U.; Sharif, H.O. Land use/land cover change along the Eastern Coast of the UAE and its impact on flooding risk. Geomat. Nat. Hazards Risk 2020, 11, 112-130. otwiera się w nowej karcie
  3. Duncan, J.; Stow, D.; Franklin, J.; Hope, A. Assessing the relationship between spectral vegetation indices and shrub cover in the Jornada Basin, New Mexico. Int. J. Remote Sens. 1993, 14, 3395-3416. otwiera się w nowej karcie
  4. Fromard, F.; Vega, C.; Proisy, C. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. Mar. Geol. 2004, 208, 265-280. otwiera się w nowej karcie
  5. Muttitanon, W.; Tripathi, N. Land use/land cover changes in the coastal zone of Ban Don Bay, Thailand using Landsat 5 TM data. Int. J. Remote Sens. 2005, 26, 2311-2323. otwiera się w nowej karcie
  6. Rawat, J.; Biswas, V.; Kumar, M. Changes in land use/cover using geospatial techniques: A case study of Ramnagar town area, district Nainital, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2013, 16, 111- 117. otwiera się w nowej karcie
  7. Zubair, A.O. Change detection in land use and Land cover using remote sensing data and GIS (A case study of Ilorin and its environs in Kwara State). Available online: content/uploads/2016/04/OpeyemiZubair_ThesisDOC.doc (accessed on 19 April 2020).
  8. Gautam, N.; Chennaiah, G.C. Land-use and land-cover mapping and change detection in Tripura using satellite LANDSAT data. Int. J. Remote Sens. 1985, 6, 517-528. otwiera się w nowej karcie
  9. König, H.J.; Schuler, J.; Suarma, U.; McNeill, D.; Imbernon, J.; Damayanti, F.; Dalimunthe, S.A.; Uthes, S.; Sartohadi, J.; Helming, K. Assessing the impact of land use policy on urban-rural sustainability using the FoPIA approach in Yogyakarta, Indonesia. Sustainability 2010, 2, 1991-2009. otwiera się w nowej karcie
  10. Swangjang, K.; Iamaram, V. Change of land use patterns in the areas close to the airport development area and some implicating factors. Sustainability 2011, 3, 1517-1530. otwiera się w nowej karcie
  11. Tian, Y.; Yin, K.; Lu, D.; Hua, L.; Zhao, Q.; Wen, M. Examining land use and land cover spatiotemporal change and driving forces in Beijing from 1978 to 2010. Remote Sens. 2014, 6, 10593-10611. otwiera się w nowej karcie
  12. Weng, Q. Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. J. Environ. Manag. 2002, 64, 273-284. otwiera się w nowej karcie
  13. Zhao, Y.; Zhang, K.; Fu, Y.; Zhang, H. Examining land-use/land-cover change in the Lake Dianchi Watershed of the Yunnan-Guizhou Plateau of southwest China with remote sensing and GIS techniques: 1974-2008. Int. J. Environ. Res. public health 2012, 9, 3843-3865. otwiera się w nowej karcie
  14. Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335-344. otwiera się w nowej karcie
  15. Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467-483. otwiera się w nowej karcie
  16. Topaloğlu, R.H.; Sertel, E.; Musaoğlu, N. ASSESSMENT OF CLASSIFICATION ACCURACIES OF SENTINEL-2 AND LANDSAT-8 DATA FOR LAND COVER/USE MAPPING. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 1055-1059. otwiera się w nowej karcie
  17. Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66-74. otwiera się w nowej karcie
  18. Masek, J.G.; Huang, C.; Wolfe, R.; Cohen, W.; Hall, F.; Kutler, J.; Nelson, P. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ. 2008, 112, 2914-2926. otwiera się w nowej karcie
  19. Thomas, N.E.; Huang, C.; Goward, S.N.; Powell, S.; Rishmawi, K.; Schleeweis, K.; Hinds, A. Validation of North American forest disturbance dynamics derived from Landsat time series stacks. Remote Sens. Environ. 2011, 115, 19-32. otwiera się w nowej karcie
  20. Hussein, S.O.; Kovács, F.; Tobak, Z.; Abdullah, H.J. Spatial distribution of vegetation cover in Erbil city districts using high-resolution Pléiades satellite image. Acta Geogr. Debrecina Landsc. Environ. 2018, 12, 10- 22. otwiera się w nowej karcie
  21. Hamad, R. A remote sensing and GIS-based analysis of urban sprawl in Soran District, Iraqi Kurdistan. SN Appl. Sci. 2020, 2, 24. otwiera się w nowej karcie
  22. Houghton, R.A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus B 2003, 55, 378-390. otwiera się w nowej karcie
  23. Dewan, A.M.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390-401. otwiera się w nowej karcie
  24. Dewan, A.M.; Yamaguchi, Y. Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960-2005. Environ. Monit. Assess. 2009, 150, 237. otwiera się w nowej karcie
  25. Jat, M.K.; Garg, P.K.; Khare, D. Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. Int. J. Appl. earth Obs. Geoinf. 2008, 10, 26-43. otwiera się w nowej karcie
  26. Mundia, C.N.; Aniya, M. Dynamics of landuse/cover changes and degradation of Nairobi City, Kenya. Land Degrad. Dev. 2006, 17, 97-108. otwiera się w nowej karcie
  27. Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash'aari, Z.H. Monitoring and assessment of urban growth patterns using spatio-temporal built-up area analysis. Environ. Monit. Assess. 2018, 190, 156. otwiera się w nowej karcie
  28. Ali, J.M.; Marsh, S.H.; Smith, M.J. A comparison between London and Baghdad surface urban heat islands and possible engineering mitigation solutions. Sustain. Cities Soc. 2017, 29, 159-168. otwiera się w nowej karcie
  29. Wałęga, A.; Radecki-Pawlik, A.; Cupak, A.; Hathaway, J.; Pukowiec, M. Influence of Changes of Catchment Permeability and Frequency of Rainfall on Critical Storm Duration in an Urbanized Catchment-A Case Study, Cracow, Poland. Water 2019, 11, 2557. otwiera się w nowej karcie
  30. SZYDLOWSKI, M. Mathematical modelling of flash floods in natural and urban areas. In Transboundary floods: Reducing risks through flood management, Springer: 2006; pp. 143-153. otwiera się w nowej karcie
  31. Zope, P.; Eldho, T.; Jothiprakash, V. Impacts of land use-land cover change and urbanization on flooding: A case study of Oshiwara River Basin in Mumbai, India. Catena 2016, 145, 142-154. otwiera się w nowej karcie
  32. Ali, M.; Khan, S.J.; Aslam, I.; Khan, Z. Simulation of the impacts of land-use change on surface runoff of Lai Nullah Basin in Islamabad, Pakistan. Landsc. Urban Plan. 2011, 102, 271-279. otwiera się w nowej karcie
  33. Miller, S.N.; Kepner, W.G.; Mehaffey, M.H.; Hernandez, M.; Miller, R.C.; Goodrich, D.C.; Kim Devonald, K.; Heggem, D.T.; Miller, W.P. INTEGRATING LANDSCAPE ASSESSMENT AND HYDROLOGIC MODELING FOR LAND COVER CHANGE ANALYSIS 1. JAWRA J. Am. Water Resour. Assoc. 2002, 38, 915-929. otwiera się w nowej karcie
  34. Sanyal, J.; Densmore, A.; Carboneau, P. Analyzing the effect of land-use/cover changes at sub-catchment levels on downstream flood peaks: A semi-distributed modeling approach with sparse data. Catena 2014, 118, 28-40. otwiera się w nowej karcie
  35. Szpakowski, W.; Szydłowski, M. Evaluating the Catastrophic Rainfall of 14 July 2016 in the Catchment Basin of the Urbanized Strzyza Stream in Gdańsk, Poland. Pol. J. Environ. Stud. 2018, 27, 861-869, doi:10.15244/pjoes/75962. otwiera się w nowej karcie
  36. Szydłowski, M.; Mikos-Studnicka, P.; Zima, P.; Weinerowska-Bords, K.; Hakiel, J.; Szawurska, D. Stormwater and snowmelt runoff storage control and flash flood hazard forecasting in the urbanized coastal basin. In Proceedings of Proc. of 14th International Symposium Water Management and Hydraulic Engineering WMHE, Brno, Czech Republic, 8-10 September 2015; pp. 141-150.
  37. Abdouli, K.A.; Hussein, K.; Ghebreyesus, D.; Sharif, H.O. Coastal Runoff in the United Arab Emirates- The Hazard and Opportunity. Sustainability 2019, 11, 5406. otwiera się w nowej karcie
  38. Ali, P.; Bohloul, A.; Hosein, M. The effect of the land use/cover changes on the floods of the Madarsu Basin of Northeastern Iran. J. Water Resour. Prot. 2010, 2, doi: 4236/jwarp.2010.24043.
  39. Apollonio, C.; Balacco, G.; Novelli, A.; Tarantino, E.; Piccinni, A.F. Land use change impact on flooding areas: The case study of Cervaro Basin (Italy). Sustainability 2016, 8, 996. otwiera się w nowej karcie
  40. Batunacun; Nendel, C.; Hu, Y.; Lakes, T. Land-use change and land degradation on the Mongolian Plateau from 1975 to 2015-A case study from Xilingol, China. Land Degrad. Dev. 2018, 29, 1595-1606.
  41. Kaul, H.A.; Sopan, I. Land use land cover classification and change detection using high resolution temporal satellite data. J. Environ. 2012, 1, 146-152.
  42. Superczynski, S.D.; Christopher, S.A. Exploring land use and land cover effects on air quality in Central Alabama using GIS and remote sensing. Remote Sens. 2011, 3, 2552-2567. otwiera się w nowej karcie
  43. Sharif, H.O.; Al-Juaidi, F.H.; Al-Othman, A.; Al-Dousary, I.; Fadda, E.; Jamal-Uddeen, S.; Elhassan, A. Flood hazards in an urbanizing watershed in Riyadh, Saudi Arabia. Geomat. Nat. Hazards Risk 2016, 7, 702-720. otwiera się w nowej karcie
  44. Hameed, H.M. Estimating the effect of urban growth on annual runoff volume using GIS in the Erbil sub- basin of the Kurdistan Region of Iraq. Hydrology 2017, 4, 12. otwiera się w nowej karcie
  45. Nanekely, M.; Scholz, M.; Al-Faraj, F. Strategic framework for sustainable management of drainage systems in semi-arid cities: An Iraqi case study. Water 2016, 8, 406. otwiera się w nowej karcie
  46. Goel, M.K. Runoff Coefficient. In Encyclopedia of Snow, Ice and Glaciers, Singh, V.P., Singh, P., Haritashya, U.K., Eds. Springer 2011; pp. 952-953. otwiera się w nowej karcie
  47. Mustafa, A.M.; Muhammed, H.H.; Szydłowski, M. Extreme rainfalls as a cause of urban flash floods; a case study of the Erbil-Kurdistan region of Iraq. Acta Sci. Pol. Form. Circumiectus 2019, 18, 113-132. otwiera się w nowej karcie
  48. Ibrahim, R.I.; Mushatat, S.A.; Abdelmonem, M.G. Erbil. Cities 2015, 49, 14-25. otwiera się w nowej karcie
  49. Yasin, S. Influence of modernity versus continuity of architectural identity on house facade in Erbil City, Iraq. Available online: ERNITY_VERSUS_CONTINUITY_OF_ARCHITECTURAL_IDENTITY_ON_HOUSE_FACADE_IN_ERBI L_CITY_IRAQ/links/5c024af1a6fdcc1b8d4d6bf3/INFLUENCE-OF-MODERNITY-VERSUS- CONTINUITY-OF-ARCHITECTURAL-IDENTITY-ON-HOUSE-FACADE-IN-ERBIL-CITY-IRAQ.pdf (accessed on 19 April 2020).
  50. Eastman, J. IDRISI Kilimanjaro guide to GIS and image processing. Manual version Available online: (accessed on 19 April 2020). otwiera się w nowej karcie
  51. Bailly, J.; Arnaud, M.; Puech, C. Boosting: A classification method for remote sensing. Int. J. Remote Sens. 2007, 28, 1687-1710. otwiera się w nowej karcie
  52. Currit, N. Development of a remotely sensed, historical land-cover change database for rural Chihuahua, Mexico. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 232-247. otwiera się w nowej karcie
  53. Jensen, J.R. Thematic information extraction: Pattern recognition. Introd. Digit. Image Process. Remote Sens. Perspect. 2005, 3 rd ed., 337-406.
  54. Liu, X.-H.; Skidmore, A.; Van Oosten, H. Integration of classification methods for improvement of land- cover map accuracy. ISPRS J. Photogramm. Remote Sens. 2002, 56, 257-268. otwiera się w nowej karcie
  55. Dissanayake, D.; Morimoto, T.; Ranagalage, M.; Murayama, Y. Land-use/land-cover changes and their impact on surface urban heat islands: Case study of Kandy City, Sri Lanka. Climate 2019, 7, 99. otwiera się w nowej karcie
  56. Ranagalage, M.; Wang, R.; Gunarathna, M.; Dissanayake, D.; Murayama, Y.; Simwanda, M. Spatial forecasting of the landscape in rapidly urbanizing hill stations of South Asia: A case study of Nuwara Eliya, Sri Lanka (1996-2037). Remote Sens. 2019, 11, 1743. otwiera się w nowej karcie
  57. Scharffenberg, W.A.; Fleming, M.J. Hydrologic Modeling System-HEC-HMS-User's Manual-Version 2.1. Available online: 74A_2001Jan.pdf(accessed on 19 April 2020).
  58. Manual, U.U.S. Geospatial Hydrologic Modelling Extension, HEC-GeoHMS, Version 1.1. Available online: (accessed on 19 April 2020).
  59. Ponce, V.M.; Hawkins, R.H. Runoff curve number: Has it reached maturity? J. Hydrol. Eng. 1996, 1, 11-19. otwiera się w nowej karcie
  60. Shrestha, M.N. Spatially distributed hydrological modelling considering land-use changes using remote sensing and GIS. In Proceedings of Map asia conference, Kuala Lumpur, Malaysia, 17-19 July 2003; pp. 1- 8.
  61. Story, M.; Congalton, R.G. Accuracy assessment: A user's perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397-399.
  62. Tung, F.; LeDrew, E. The determination of optimal threshold levels for change detection using various accuracy indexes. Photogramm. Eng. Remote Sens. 1988, 54, 1449-1454.
  63. Szpakowski, W.; Szydłowski, M. Probable Rainfall in Gdańsk in View of Climate Change. Acta. Sci. Pol., Form. Cir. 2018, 3, 175-183. otwiera się w nowej karcie
  64. KRG. Ministry of planning. Regional statistical office. Erbil: Statistic Year Book; Available online: on 19 April 2020).
  65. Jiang, D.; Huang, Y.; Zhuang, D.; Zhu, Y.; Xu, X.; Ren, H. A simple semi-automatic approach for land cover classification from multispectral remote sensing imagery. PloS one 2012, 7, e45889. otwiera się w nowej karcie
  66. Blackman, N.J.M.; Koval, J.J. Interval estimation for Cohen's kappa as a measure of agreement. Stat. Med. 2000, 19, 723-741. otwiera się w nowej karcie
  67. Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. biometrics 1977, 33, 159-174. otwiera się w nowej karcie
  68. Sabr, C. A study on the urban form of Erbil city (the capital of Kurdistan region) as an example of historical and fast growing city. Humanit. Soc. Sci. Rev. CD-ROM 2014, 3, 325-340.
  69. Jongerden, J.; Wolters, W.; Dijkxhoorn, Y.; Gür, F.; Öztürk, M. The Politics of Agricultural Development in Iraq and the Kurdistan Region in Iraq (KRI). Sustainability 2019, 11, 5874. otwiera się w nowej karcie
  70. Al-Jameel, A.; Al-Yaqoobi, D.; Sulaiman, W. Spatial configuration of Erbil Citadel: Its potentials for adaptive re-use. In Proceedings of the 10th international space syntax symposium. London, United Kingdom, 13-17 July 2015.
  71. Huong, H.T.L.; Pathirana, A. Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol. Earth Syst. Sci. 2013, 17, 379. otwiera się w nowej karcie
  72. Nirupama, N.; Simonovic, S.P. Increase of flood risk due to urbanisation: A Canadian example. Nat. Hazards 2007, 40, 25. otwiera się w nowej karcie
  73. Saghafian, B.; Farazjoo, H.; Bozorgy, B.; Yazdandoost, F. Flood intensification due to changes in land use. Water Resour. Manag. 2008, 22, 1051-1067. otwiera się w nowej karcie
  74. Suarez, P.; Anderson, W.; Mahal, V.; Lakshmanan, T. Impacts of flooding and climate change on urban transportation: A systemwide performance assessment of the Boston Metro Area. Transp. Res. Part. D Transp. Environ. 2005, 10, 231-244. otwiera się w nowej karcie
  75. Hakiel, J.; Szydłowski, M. Interaction Between Storm Water Conduit Flow and Overland Flow for Numerical Modelling of Urban Area Inundation. In Hydrodynamic and Mass Transport at Freshwater Aquatic Interfaces: 34th International School of Hydraulics, Rowiński, P., Marion, A., Eds. Springer International Publishing: 2016; pp. 23-34. otwiera się w nowej karcie
  76. Szydłowski, M. Hydraulic analysis of causes of washout of Gdynia-Orłowo sea-shore during the flood in the Kacza river estuary. Pol. Marit. Res. 2019, doi: 10.2478/pomr-2019-0019. otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 55 razy

Publikacje, które mogą cię zainteresować

Meta Tagi