The In-Depth Studies of Pulsed UV Laser-Modified TiO2 Nanotubes: The Influence of Geometry, Crystallinity, and Processing Parameters - Publikacja - MOST Wiedzy


The In-Depth Studies of Pulsed UV Laser-Modified TiO2 Nanotubes: The Influence of Geometry, Crystallinity, and Processing Parameters


The laser processing of the titania nanotubes has been investigated in terms of morphology, structure, and optical properties of the obtained material. The length of the nanotubes and crystallinity, as well as the atmosphere of the laser treatment, were taken into account. The degree of changes of the initial geometry of nanotubes were checked by means of scanning electron microscopy, which visualizes both the surface and the cross-section. The phase conversion from the amorphous to anatase has been achieved for laser-treated amorphous material, whereas modification of calcined one led to distortion within the crystal structure. This result is confirmed both by Raman and grazing incident XRD measurements. The latter studies provided an in-depth analysis of the crystalline arrangement and allowed also for determining the propagation of laser modification. The narrowing of the optical bandgap for laser-treated samples has been observed. Laser treatment of TiO2 nanotubes can lead to the preparation of the material of desired structural and optical parameters. The usage of the motorized table during processing enables induction of changes in the precisely selected area of the sample within a very short time.


  • 6


  • 6

    Web of Science

  • 6


Autorzy (6)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 10 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
Nanomaterials nr 10,
ISSN: 2079-4991
Rok wydania:
Opis bibliograficzny:
Haryński Ł., Grochowska K., Kupracz P., Karczewski J., Coy E., Siuzdak K.: The In-Depth Studies of Pulsed UV Laser-Modified TiO2 Nanotubes: The Influence of Geometry, Crystallinity, and Processing Parameters// Nanomaterials -Vol. 10,nr. 3 (2020), s.430-
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/nano10030430
Bibliografia: test
  1. Taziwa, R.; Meyer, E.; Zinya, S. A microscopy study of the effect of annealing temperature on the morphological and structural properties of titanium dioxide nanotubes fabricated on functional substrates. Int. J. Nanotechnol. Eng. Med. 2018, 3, 16-27.
  2. He, G.; Zhang, J.; Hu, Y.; Bai, Z.; Wei, C. Dual-template synthesis of mesoporous TiO 2 nanotubes with structure-enhanced functional photocatalytic performance. Appl. Catal. B 2019, 250, 301-312. [CrossRef] otwiera się w nowej karcie
  3. Huang, J.; Cao, Y.; Deng, Z.; Tong, H. Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment. J. Solid State Chem. 2011, 184, 712-719. [CrossRef] otwiera się w nowej karcie
  4. Regonini, D.; Bowen, C.R.; Jaroenworaluck, A.; Stevens, R. A review of growth mechanism, structure and crystallinity of anodized TiO 2 nanotubes. Mater. Sci. Eng. R 2013, 74, 377-406. [CrossRef] otwiera się w nowej karcie
  5. Wang, J.; Li, H.; Sun, Y.; Bai, B.; Zhang, Y.; Fan, Y. Anodization of Highly Ordered TiO 2 Nanotube Arrays Using Orthogonal Design and Its Wettability. Int. J. Electrochem. Sci. 2016, 11, 710-723. otwiera się w nowej karcie
  6. Zwilling, V.; Darque-Ceretti, E.; Boutry-Forveille, A.; David, D.; Perrin, M.Y.; Aucouturier, M.Y. Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy. Surf. Interface Anal. 1999, 27, 629-637. [CrossRef] otwiera się w nowej karcie
  7. Galstyan, V.; Vomiero, A.; Comini, E.; Faglia, G.; Sberveglieri, G. TiO 2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates. RSC Adv. 2011, 1, 1038-1044. [CrossRef] otwiera się w nowej karcie
  8. Kulkarni, M.; Mazare, A.; Schmuki, P.; Iglic, A. Influence of anodization parameters on morphology of TiO 2 nanostructured surfaces. Adv. Mater. Lett. 2016, 7, 23-28. [CrossRef] otwiera się w nowej karcie
  9. Galstyan, V.; Comini, E.; Baratto, C.; Ponzoni, A.; Ferroni, M.; Poli, N.; Bontempi, E.; Brisotto, M.; Faglia, G.; Sbervegliery, G. Large surface area biphase titania for chemical sensing. Sens. Actuator B Chem. 2015, 209, 1091-1096. [CrossRef] otwiera się w nowej karcie
  10. Liao, Y.; Que, W.; Zhong, P.; Zhang, J.; He, Y. A facile method to crystallize amorphous anodized TiO 2 nanotubes at low temperature. ACS Appl. Mater. Interfaces 2011, 3, 2800-2804. [CrossRef] otwiera się w nowej karcie
  11. Wang, D.; Liu, L.; Zhang, F.; Tao, K.; Pippel, E.; Domen, K. Spontaneous Phase and Morphology Transformations of Anodized Titania Nanotubes Induced by Water at Room Temperature. Nano Lett. 2011, 3649-3655. [CrossRef] [PubMed] otwiera się w nowej karcie
  12. Lamberti, A.; Chiodoni, A.; Shahzad, N.; Bianco, S.; Quaglio, M.; Pirri, C.F. Ultrafast Room-Temperature Crystallization of TiO 2 Nanotubes Exploiting Water-Vapor Treatment. Sci. Rep. 2015, 5, 7808. [CrossRef] [PubMed] otwiera się w nowej karcie
  13. Benčina, M.; Junkar, I.; Zaplotnik, R.; Valant, M.; Iglič, A.; Mozetič, M. Plasma-Induced Crystallization of TiO 2 Nanotubes. Materials 2019, 12, 626. [CrossRef] [PubMed] otwiera się w nowej karcie
  14. Joya, Y.F.; Liu, Z.; Wang, Z. Generation of silver-anatase nanocomposite by excimer laser-assisted processing. AIP Adv. 2012, 2, 032171. [CrossRef] otwiera się w nowej karcie
  15. Overschelde, O.V.; Guisbiers, G.; Wautelet, M. Nanocrystallization of Anatase or Rutile TiO 2 by Laser Treatment. J. Phys. Chem. C 2009, 113, 15343-15345. [CrossRef] otwiera się w nowej karcie
  16. Vásquez, G.C.; Peche-Herrero, M.A.; Maestre, D.; Gianoncelli, A.; Ramírez-Castellanos, J.; Cremades, A.; González-Calbet, J.M.; Piqueras, J. Laser-Induced Anatase-to-Rutile Transition in TiO 2 Nanoparticles: Promotion and Inhibition Effects by Fe and Al Doping and Achievement of Micropatterning. J. Chem. Phys. C 2015, 119, 11965-11974. [CrossRef] otwiera się w nowej karcie
  17. Likodimos, V.; Stergiopoulos, T.; Falaras, P.; Kunze, J.; Schmuki, P. Phase Composition, Size, Orientation, and Antenna Effects of Self-Assembled Anodized Titania Nanotube Arrays: A Polarized Micro-Raman Investigation. J. Phys. Chem. C 2008, 12687-12969. [CrossRef] otwiera się w nowej karcie
  18. Hsu, M.; Thang, N.V.; Wang, C.; Leu, J. Structural and morphological transformations of TiO 2 nanotube arrays induced by excimer laser treatment. Thin Solid Films 2012, 3593-3599. [CrossRef] otwiera się w nowej karcie
  19. Enachi, M.; Stevens-Kalceff, M.A.; Sarua, A.; Ursaki, V.; Tiginyanu, I. Design of titania nanotube structures by focused laser beam direct writing. J. Appl. Phys. 2013, 114, 234302. [CrossRef] otwiera się w nowej karcie
  20. Xu, Y.; Melia, M.A.; Tsui, L.; Fitz-Gerald, J.M.; Zangari, G. Laser-Induced Surface Modification at Anatase TiO 2 Nanotube Array Photoanodes for Photoelectrochemical Water Oxidation. J. Phys. Chem. C 2017, 121, 17121-17128. [CrossRef] otwiera się w nowej karcie
  21. Tighineanu, A.; Ruff, T.; Albu, S.; Hahn, R.; Schmuki, P. Conductivity of TiO 2 nanotubes: Influence of annealing time and temperature. Chem. Phys. Lett. 2010, 494, 260-263. [CrossRef] otwiera się w nowej karcie
  22. Tighineanu, A. Electrical Conductivity of TiO 2 Nanotubes. Ph.D. Thesis, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany, 14 September 2015.
  23. Guo, L.; Wang, J.; Lin, Z.; Gacek, S.; Wang, X. Anisotropic thermal transport in highly ordered TiO 2 nanotube arrays. Int. J. Appl. 2009, 106, 123526. [CrossRef] otwiera się w nowej karcie
  24. Nishikawa, M.; Fukuda, M.; Nakabayashi, Y.; Saito, N.; Ogawa, N.; Nakajima, T.; Shinoda, K.; Tsuchiya, T.; Nosaka, Y. A method to give chemically stabilities of photoelectrodes for water splitting: Compositing of a highly crystalized TiO 2 layer on a chemically unstable Cu 2 O photocathode using laser-induced crystallization process. Appl. Surf. Sci. 2016, 363, 173-180. [CrossRef] otwiera się w nowej karcie
  25. Siuzdak, K.; Szkoda, M.; Sawczak, M.; Karczewski, J.; Ryl, J.; Cenian, A. Ordered titania nanotubes layer selectively annealed by laser beam for high contrast electrochromic switching. Thin Solid Films 2018, 659, 48-56. [CrossRef] otwiera się w nowej karcie
  26. Haryński, Ł.; Grochowska, K.; Karczewski, J.; Ryl, J.; Siuzdak, K. Scalable Route toward Superior Photoresponse of UV-Laser-Treated TiO 2 Nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 3225-3235. [CrossRef] [PubMed] otwiera się w nowej karcie
  27. Henke, B.L.; Gullikson, E.M.; Davis, J.C. X-ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92. Atom. Data Nucl. Data 1993, 54, 181-342. [CrossRef] otwiera się w nowej karcie
  28. Fernández-García, M.; Wang, X.; Belver, C.; Hanson, J.C.; Rodriguez, J.A. Anatase-TiO 2 Nanomaterials: Morphological/Size Dependence of the Crystallization and Phase Behavior Phenomena. J. Phys. Chem. C 2007, 111, 674-682. [CrossRef] otwiera się w nowej karcie
  29. Krishnan, K.; Krishnan, R.S. Raman and infrared spectra of ethylene glycol. Proc. Indian AS-Math. Sci. 1966, 111-122. [CrossRef] otwiera się w nowej karcie
  30. Ferrari, A.C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414. [CrossRef] otwiera się w nowej karcie
  31. Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891-2959. [CrossRef] otwiera się w nowej karcie
  32. Wang, B.; Shen, S.; Mao, S.S. Black TiO 2 for solar hydrogen conversion. J. Materiomics 2017, 3, 96-111. [CrossRef] otwiera się w nowej karcie
  33. Freitas, R.G.; Santanna, M.A.; Pereira, E.C. Dependence of TiO 2 nanotube microstructural and electronic properties on water splitting. J. Power Sources 2014, 251, 178-186. [CrossRef] otwiera się w nowej karcie
  34. Prasai, B.; Cai, B.; Underwood, M.K.; Lewis, J.P.; Drabold, D.A. Properties of amorphous and crystalline titanium dioxide from first principles. J. Mater. Sci. 2012, 47, 7515-7521. [CrossRef] otwiera się w nowej karcie
  35. Dette, C.; Perez-Osorio, M.A.; Kley, C.S.; Punke, P.; Patrick, C.E.; Jacobson, P.; Giustino, F.; Jung, J.S.; Kern, K. Anatase with a Bandgap in the Visible Region. Nano Lett. 2014, 14, 6533-6538. [CrossRef] otwiera się w nowej karcie
  36. Ly, N.T.; Nguyen, V.C.; Dao, T.H.; To, L.H.H.; Pham, D.L.; Do, H.M.; Vu, D.L.; Le, V.H. Optical properties of TiO 2 nanotube arrays fabricated by the electrochemical anodization method. Adv. Nat. Sci. Nanosci. 2014, 015004. [CrossRef] otwiera się w nowej karcie
  37. Mathew, S.; Prasad, A.K.; Benoy, A.T.; Rakesh, P.P.; Hari, M.; Libish, T.M.; Radhakrishnan, P.; Nampoori, V.P.N.; Vallabhan, C.P.G. UV-Visible Photoluminescence of TiO 2 Nanoparticles Prepared by Hydrothermal Method. J. Fluoresc. 2012, 22, 1563-1569. [CrossRef] otwiera się w nowej karcie
  38. Stevanovic, A.; Büttner, M.; Zhang, Z.; Yates, J.T. Photoluminescence of TiO 2 : Effect of UV Light and Adsorbed Molecules on Surface Band Structure. J. Am. Chem. Soc. 2012, 134, 324-332. [CrossRef] otwiera się w nowej karcie
  39. Mercado, C.; Seeley, Z.; Bandyopadhyay, A.; Bose, S.; McHale, J.L. Photoluminescence of Dense Nanocrystalline Titanium Dioxide Thin Films: Effect of Doping and Thickness and Relation to Gas Sensing. ACS Appl. Mater. Interfaces 2011, 3, 2281-2288. [CrossRef] otwiera się w nowej karcie
  40. Abazović, N.D.;Čomor, M.I.; Dramićanin, M.D.; Jovanović, D.J.; Ahrenkiel, S.P.; Nedeljković, J.M. Photoluminescence of Anatase and Rutile TiO 2 Particles. J. Phys. Chem. B 2006, 110, 25366-25370. [CrossRef] otwiera się w nowej karcie
  41. Pallotti, D.K.; Passoni, L.; Maddalena, P.; Fonzo, F.D.; Lattieri, S. Photoluminescence Mechanisms in Anatase and Rutile TiO 2 . J. Chem. Phys. 2017, 9011-9021. [CrossRef] otwiera się w nowej karcie
  42. Jung, K.Y.; Park, S.B.; Anpo, M. Photoluminescence and photoactivity of titania particles prepared by the sol-gel technique: Effect of calcination temperature. J. Photoch. Photobiol. A 2005, 170, 247-252. [CrossRef] otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 11 razy

Publikacje, które mogą cię zainteresować

Meta Tagi