Abstrakt
We present an overview of the ONETEP program for linear-scaling density functional theory (DFT) calculations with large basis set (planewave) accuracy on parallel computers. The DFT energy is computed from the density matrix, which is constructed from spatially localized orbitals we call Non-orthogonal Generalized Wannier Functions (NGWFs), expressed in terms of periodic sinc (psinc) functions. During the calculation, both the density matrix and the NGWFs are optimized with localization constraints. By taking advantage of localization, ONETEP is able to perform calculations including thousands of atoms with computational effort, which scales linearly with the number or atoms. The code has a large and diverse range of capabilities, explored in this paper, including different boundary conditions, various exchange– correlation functionals (with and without exact exchange), finite electronic temperature methods for metallic systems, methods for strongly correlated systems, molecular dynamics, vibrational calculations, time-dependent DFT, electronic transport, core loss spectroscopy, implicit solvation, quantum mechanical (QM)/molecular mechanical and QM-in-QM embedding, density of states calculations, distributed multipole analysis, and methods for partitioning charges and interactions between fragments. Calculations with ONETEP provide unique insights into large and complex systems that require an accurate atomic-level description, ranging from biomolecular to chemical, to materials, and to physical problems, as we show with a small selection of illustrative examples. ONETEP has always aimed to be at the cutting edge of method and software developments, and it serves as a platform for developing new methods of electronic structure simulation. We therefore conclude by describing some of the challenges and directions for its future developments and applications.
Cytowania
-
1 1 2
CrossRef
-
0
Web of Science
-
1 1 1
Scopus
Autorzy (36)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1063/5.0004445
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
JOURNAL OF CHEMICAL PHYSICS
nr 152,
strony 174111 - 174111,
ISSN: 0021-9606 - Język:
- angielski
- Rok wydania:
- 2020
- Opis bibliograficzny:
- Prentice J., Aarons J., Womack J., Allen A., Andrinopoulos L., Anton L., Bell R., Bhandari A., Bramley G., Charlton R., Clements R., Cole D., Constantinescu G., Corsetti F., Dubois S., Duff K., Escartín J., Greco A., Hill Q., Lee L., Linscott E., O’regan D., Phipps M., Ratcliff L., Serrano Á., Tait E., Teobaldi G., Vitale V., Yeung N., Zuehlsdorff T., Dziedzic J., Haynes P., Hine N., Mostofi A., Payne M., Skylaris C.: The ONETEP linear-scaling density functional theory program// JOURNAL OF CHEMICAL PHYSICS -Vol. 152,iss. 17 (2020), s.174111-174111
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1063/5.0004445
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 187 razy