The Role of Electron Transfer in the Fragmentation of Phenyl and Cyclohexyl Boronic Acids - Publikacja - MOST Wiedzy

Wyszukiwarka

The Role of Electron Transfer in the Fragmentation of Phenyl and Cyclohexyl Boronic Acids

Abstrakt

In this study, novel measurements of negative ion formation in neutral potassium-neutral boronic acid collisions are reported in electron transfer experiments. The fragmentation pattern of phenylboronic acid is comprehensively investigated for a wide range of collision energies, i.e., from 10 to 1000 eV in the laboratory frame, allowing some of the most relevant dissociation channels to be probed. These studies were performed in a crossed molecular beam set up using a potassium atom as an electron donor. The negative ions formed in the collision region were mass analysed with a reflectron time-of-flight mass spectrometer. In the unimolecular decomposition of the temporary negative ion, the two most relevant yields were assigned to BO− and BO2−. Moreover, the collision-induced reaction was shown to be selective, i.e., at energies below 100 eV, it mostly formed BO−, while at energies above 100 eV, it mostly formed BO2−. In order to further our knowledge on the complex internal reaction mechanisms underlying the influence of the hybridization state of the boron atom, cyclohexylboronic acid was also investigated in the same collision energy range, where the main dissociation channel yielded BO2−. The experimental results for phenyl boronic acid are supported by ab initio theoretical calculations of the lowest unoccupied molecular orbitals (LUMOs) accessed in the collision process.

Cytowania

  • 4

    CrossRef

  • 4

    Web of Science

  • 4

    Scopus

Autorzy (10)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 9 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES nr 20,
ISSN: 1661-6596
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Lozano A., Pamplona B., Kilich T., Łabuda M., Mendes M., Pereira-Da-Silva J., García G., Gois P., Ferreira Da Silva F., Limão-Vieira P.: The Role of Electron Transfer in the Fragmentation of Phenyl and Cyclohexyl Boronic Acids// INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES -Vol. 20,iss. 22 (2019), s.5578-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ijms20225578
Bibliografia: test
  1. Ban, H.S.; Nakamura, H. Boron-based drug design. Chem. Rec. 2015, 15, 616-635. [CrossRef] [PubMed] otwiera się w nowej karcie
  2. Santos, F.M.F.; Rosa, J.N.; Candeias, N.R.; Carvalho, C.P.; Matos, A.I.; Ventura, A.E.; Florindo, H.F.; Silva, L.C.; Pischel, U.; Gois, P.M.P. A Three-Component Assembly Promoted by Boronic Acids Delivers a Modular Fluorophore Platform (BASHY Dyes). Chem. A Eur. J. 2016, 22, 1631-1637. [CrossRef] [PubMed] otwiera się w nowej karcie
  3. Mader, H.S.; Wolfbeis, O.S. Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim. Acta 2008, 162, 1-34. [CrossRef] otwiera się w nowej karcie
  4. Fu, H.; Fang, H.; Sun, J.; Wang, H.; Liu, A.; Sun, J.; Wu, Z. Boronic Acid-based Enzyme Inhibitors: A Review of Recent Progress. Curr. Med. Chem. 2014, 21, 3271-3280. [CrossRef] [PubMed] otwiera się w nowej karcie
  5. Yang, W.; Gao, X.; Wang, B. Boronic acid compounds as potential pharmaceutical agents. Med. Res. Rev. 2003, 23, 346-368. [CrossRef] otwiera się w nowej karcie
  6. Boudaïffa, B.; Cloutier, P.; Hunting, D.; Huels, M.A.; Sanche, L. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 2000, 287, 1658-1660.
  7. Martin, F.; Burrow, P.D.; Cai, Z.; Cloutier, P.; Hunting, D.; Sanche, L. DNA strand breaks induced by 0-4 eV electrons: The role of shape resonances. Phys. Rev. Lett. 2004, 93, 6-9. [CrossRef] otwiera się w nowej karcie
  8. Sanche, L. Low energy electron-driven damage in biomolecules. Eur. Phys. J. D 2005, 35, 367-390. [CrossRef] otwiera się w nowej karcie
  9. Wang, C.R.; Nguyen, J.; Lu, Q. Bin Bond breaks of nucleotides by dissociative electron transfer of nonequilibrium prehydrated electrons: A new molecular mechanism for reductive DNA damage. J. Am. Chem. Soc. 2009, 131, 11320-11322. [CrossRef] otwiera się w nowej karcie
  10. Int. J. Mol. Sci. 2019, 20, 5578 14 of 15 otwiera się w nowej karcie
  11. Ferreira Da Silva, F.; Almeida, D.; Antunes, R.; Martins, G.; Nunes, Y.; Eden, S.; Garcia, G.; Limão-Vieira, P. Electron transfer processes in potassium collisions with 5-fluorouracil and 5-chlorouracil. Phys. Chem. Chem. Phys. 2011, 13, 21621-21629. [CrossRef] otwiera się w nowej karcie
  12. Mendes, M.; Probst, M.; Maihom, T.; García, G.; Limão-Vieira, P. Selective Bond Excision in Nitroimidazoles by Electron Transfer Experiments. J. Phys. Chem. A 2019, 123, 4068-4073. [CrossRef] [PubMed] otwiera się w nowej karcie
  13. Mendes, M.; Pamplona, B.; Kumar, S.; da Silva, F.F.; Aguilar, A.; García, G.; Bacchus-Montabonel, M.C.; Limao-Vieira, P. Ion-pair formation in neutral potassium-neutral pyrimidine collisions: Electron transfer experiments. Front. Chem. 2019, 7, 1-10. [CrossRef] [PubMed] otwiera się w nowej karcie
  14. Almeida, D.; Ferreira Da Silva, F.; García, G.; Limão-Vieira, P. Selective bond cleavage in potassium collisions with pyrimidine bases of DNA. Phys. Rev. Lett. 2013, 110, 1-5. [CrossRef] [PubMed] otwiera się w nowej karcie
  15. Manura, J.; Manura, D. Isotope Distribution Calculator and Mass Spec Plotter. Sci. Instrum. Serv. 2009, 1996-2009.
  16. Zhai, H.J.; Wang, L.M.; Li, S.D.; Wang, L.S. Vibrationally resolved photoelectron spectroscopy of BO-and BO2-: A joint experimental and theoretical study. J. Phys. Chem. A 2007, 111, 1030-1035. [CrossRef] otwiera się w nowej karcie
  17. Alizadeh, E.; Orlando, T.M.; Sanche, L. Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA. Annu. Rev. Phys. Chem. 2015, 66, 379-398. [CrossRef] otwiera się w nowej karcie
  18. Alizadeh, E.; Sanz, A.G.; García, G.; Sanche, L. Radiation Damage to DNA: The Indirect Effect of Low Energy Electrons. J. Phys. Chem. Lett. 2013, 4, 820-825. [CrossRef] otwiera się w nowej karcie
  19. Cunha, T.; Mendes, M.; Ferreira Da Silva, F.; Eden, S.; García, G.; Bacchus-Montabonel, M.C.; Limão-Vieira, P. Electron transfer driven decomposition of adenine and selected analogs as probed by experimental and theoretical methods. J. Chem. Phys. 2018, 148. [CrossRef] otwiera się w nowej karcie
  20. Luo, Y.-R. Bond dissociation energies. Q. Rev. Chem. Soc. 2009, 9, 65-98.
  21. Ervin, K.M.; Anusiewicz, I.; Skurski, P.; Simons, J.; Lineberger, W.C. The only stable state of O2-is the X 2 g ground state and it (still!) has an adiabatic electron detachment energy of 0.45 eV. J. Phys. Chem. A 2003, 107, 8521-8529. [CrossRef] otwiera się w nowej karcie
  22. Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 2018, 80, 50-64. [CrossRef] [PubMed] otwiera się w nowej karcie
  23. Antunes, R.; Almeida, D.; Martins, G.; Mason, N.J.; Garcia, G. Negative ion formation in potassium-Nitromethane collisions. Phys. Chem. Chem. Phys. 2010, 12, 12513-12519. [CrossRef] [PubMed] otwiera się w nowej karcie
  24. Bacchus-Montabonel, M.C.; Łabuda, M.; Tergiman, Y.S.; Sienkiewicz, J.E. Theoretical treatment of charge-transfer processes induced by collision of Cq+ ions with uracil. Phys. Rev. A At. Mol. Opt. Phys. 2005, 72, 1-9. [CrossRef] otwiera się w nowej karcie
  25. Erdmann, E.; Bacchus-Montabonel, M.C.; Łabuda, M. Modelling charge transfer processes in C2+-tetrahydrofuran collision for ion-induced radiation damage in DNA building blocks. Phys. Chem. Chem. Phys. 2017, 19, 19722-19732. [CrossRef] otwiera się w nowej karcie
  26. Bacchus-Montabonel, M.C.; Tergiman, Y.S. An ab initio study of ion induced charge transfer dynamics in collision of carbon ions with thymine. Phys. Chem. Chem. Phys. 2011, 13, 9761-9767. [CrossRef] otwiera się w nowej karcie
  27. Bacchus-Montabonel, M.C. Proton-induced damage on 2-aminooxazole, a potential prebiotic compound. J. Phys. Chem. A 2015, 119, 728-734. [CrossRef] otwiera się w nowej karcie
  28. Bacchus-Montabonel, M.C. Ab initio treatment of ion-induced charge transfer dynamics of isolated 2-deoxy-d-ribose. J. Phys. Chem. A 2014, 118, 6326-6332. [CrossRef] otwiera się w nowej karcie
  29. Almeida, D.; Bacchus-Montabonel, M.C.; Da Silva, F.F.; García, G.; Limão-Vieira, P. Potassium-uracil/thymine ring cleavage enhancement as studied in electron transfer experiments and theoretical calculations. J. Phys. Chem. A 2014, 118, 6547-6552. [CrossRef] otwiera się w nowej karcie
  30. Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652. [CrossRef] otwiera się w nowej karcie
  31. Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785-789. [CrossRef] otwiera się w nowej karcie
  32. Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829-5835. [CrossRef] otwiera się w nowej karcie
  33. Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73-78. [CrossRef] otwiera się w nowej karcie
  34. Werner, H.J.; Knowles, P.J.; Knizia, G.; Manby, F.R.; Schütz, M. Molpro: A general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 242-253. [CrossRef] otwiera się w nowej karcie
  35. Sergentu, D.C.; Amaouch, M.; Pilmé, J.; Galland, N.; Maurice, R. Electronic structures and geometries of the XF 3 (X = Cl, Br, I, At) fluorides. J. Chem. Phys. 2015, 143. [CrossRef] [PubMed] otwiera się w nowej karcie
  36. Lawley, K.P.; Roos, B.O. AB Initio Methods in Quantum Chemistry II. Adv. Chem. Phys. 1987, 69, 399-466. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

Powiązane datasety

wyświetlono 64 razy

Publikacje, które mogą cię zainteresować

Meta Tagi