Abstrakt
In the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and deep learning technologies effectively support the user in performing parts of healthcare tasks, often resulting in better results that cannot be achieved by humans. AI systems are designed to cope with the complex data generated within modern healthcare. Although deep learning algorithms proved to provide reliable results on variety of data types most common algorithms performs best when applied on images. Therefor in this chapter, the step-by-step process of building the medical application that utilizes the neural network model for image based diagnosis is presented
Autor (1)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja monograficzna
- Typ:
- rozdział, artykuł w książce - dziele zbiorowym /podręczniku w języku o zasięgu międzynarodowym
- Język:
- angielski
- Rok wydania:
- 2021
- Opis bibliograficzny:
- Kocejko T.: THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN// Information technology in biomedical engineering/ : , 2021, s.38-47
- Źródła finansowania:
-
- Działalność statutowa/subwencja
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 157 razy