The use of recycled semiconductor material in crystalline silicon photovoltaic modules production - A life cycle assessment of environmental impacts - Publikacja - MOST Wiedzy

Wyszukiwarka

The use of recycled semiconductor material in crystalline silicon photovoltaic modules production - A life cycle assessment of environmental impacts

Abstrakt

To offset the negative impact of photovoltaic modules on the environment, it is necessary to introduce a longterm strategy that includes a complete lifecycle assessment of all system components from the production phase through installation and operation to disposal. Recycling of waste products and worn-out systems is an important element of this strategy. As the conclusions from the previous studies have shown, thermal treatment provides an efficient first step in the recycling process, while chemical treatment was more advantageous in the second step. This study aims to assess the environmental impact of recovering and recycling the valuable semiconductor silicon wafer material from photovoltaic solar cells. A comparison was made between producing new solar cells with or without recycled silicon material. The analysis of the photovoltaic cell life cycle scenario including material recycling presented in this article was performed using SimaPro software and data combined and extended from different LCI databases. The idea is that the use of recycled materials, which were energy-consuming in the primary production stage, allows to meaningly reduce the energy input in the secondary life cycle. All stages of the silicon cell life cycle contribute to the Global Warming Potential (GWP) and greenhouse gas emissions reductions through the use of recycled silicon material represented 42%. The total environmental impact of photovoltaic production can be reduced by as much as 58%, mainly through reduced energy consumption in the production process of high purity crystalline silicon.

Cytowania

  • 2 0

    CrossRef

  • 1 5

    Web of Science

  • 1 7

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 0 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
SOLAR ENERGY MATERIALS AND SOLAR CELLS nr 205, strony 1 - 9,
ISSN: 0927-0248
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Klugmann-Radziemska E., Kuczyńska-Łażewska A.: The use of recycled semiconductor material in crystalline silicon photovoltaic modules production - A life cycle assessment of environmental impacts// SOLAR ENERGY MATERIALS AND SOLAR CELLS -Vol. 205, (2020), s.1-9
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.solmat.2019.110259
Bibliografia: test
  1. A. Sumper, et al. Life-cycle assessment of a photovoltaic system in Catalonia (Spain), 374 otwiera się w nowej karcie
  2. Renew Sustain Energy Rev, 15 (8) (2011), 3888-3896 otwiera się w nowej karcie
  3. A.F. Sherwani, J.A. Usmani, Varum, Life cycle assessment of solar PV based electricity 376 generation systems: a review, Renew Sustain Energy Rev (2010), p. 14 otwiera się w nowej karcie
  4. J. Peng, L. Lu, H. Yang, Review on life cycle assessment of energy payback and otwiera się w nowej karcie
  5. Perpiñan O, et al. Energy Payback Time of Grid Connected PV Systems: Comparison 394 otwiera się w nowej karcie
  6. Between Tracking and Fixed Systems, Progress in Photovoltaics Research and 395 otwiera się w nowej karcie
  7. Applications (2009) 17(2), 137-147, doi: 10.1002/pip.871 396 otwiera się w nowej karcie
  8. Perez M.J.R, et al., Façade-integrated photovoltaics: a life cycle and performance 397 assessment case study. Progress in Photovoltaics: Research And Applications 2012, 398 20(8), 975-90. doi: 10.1002/pip.1167 otwiera się w nowej karcie
  9. Jungbluth N. et al. Life Cycle Assessment for emerging technologies: case studies for 400 photovoltaic and wind power. The International Journal of Life Cycle Assessment (2005), 401 10, 24-34. doi: doi.org/10.1065 otwiera się w nowej karcie
  10. Desideri U., et al. Life cycle assessment of a ground-mounted 1778 kWp photovoltaic 403 plant and comparison with traditional energy production systems. Applied Energy (2012) 404 97, 930-943. doi:10.1016/j.apenergy.2012.01.055 otwiera się w nowej karcie
  11. Bayod-Rújula Á.A., Lorente-Lafuente A.M., Cirez-Oto F. Environmental assessment of 406 grid connected photovoltaic plants with 2-axis tracking versus fixed modules systems. otwiera się w nowej karcie
  12. Energy (2011), 36(5), 3148-58. doi: 10.1016/j.energy.2011.03.004 otwiera się w nowej karcie
  13. Menoufi K., Chemisana D., Rosell J.I., Life cycle assessment of a building integrated 409 concentrated photovoltaic scheme. Applied Energy (2013)111, 505-514. 410 doi:10.1016/j.egypro.2017.09.041 otwiera się w nowej karcie
  14. Graebig M., Bringezu S., Fenner R. Comparative analysis of environmental impacts of 412 maize-biogas and photovoltaics on a land use basis. Solar Energy (2010) 84,1255-1263. 413 doi: 10.1016/j.solener.2010.04.002 otwiera się w nowej karcie
  15. Desideri U., et al. Comparative analysis of concentrating solar power and photovoltaic 415 technologies: Technical and environmental evaluations. Applied Energy (2013) 102,765- 416 84. doi: 10.1016/j.apenergy.2012.08.033 otwiera się w nowej karcie
  16. Wild-Scholten M.J., Alsema E.A., Environmental life cycle inventory of crystalline otwiera się w nowej karcie
  17. Braga, A. F. B., Moreira, S. P., Zampieri, P.R.Bacchin, J. M. G. and Mei, P. R.; New 451 processes for the production of solar-grade polycrystalline silicon: A review. Solar 452 otwiera się w nowej karcie
  18. Energy Materials & Solar Cells (2008), 92, 418-424. doi: 10.1016/j.solmat.2007.10.003 453 otwiera się w nowej karcie
  19. Klugmann-Radziemska, E. and Ostrowski, P., Chemical treatment of crystalline silicon 454 solar cells as a method of recovering pure silicon from photovoltaic modules, Renewable 455 Energy (2010), 35 (8), 1751-1759; doi: 10.1016/j.renene.2009.11.031 otwiera się w nowej karcie
  20. Tao, J. and Yu, S. (2015) Review on feasible recycling pathways and technologies of 457 solar photovoltaic modules, Solar Energy Materials and Solar Cells (2015) 141, 108-124; otwiera się w nowej karcie
  21. 458 doi: 10.1016/j.solmat.2015.05.005 otwiera się w nowej karcie
  22. A. Kuczyńska-Łażewska, E. Klugmann-Radziemska, Z. Sobczak, T. Klimczuk, 460 otwiera się w nowej karcie
  23. Recovery of silver metallization from damaged silicon cells; Solar Energy Materials and 461 Solar Cells (2018) 176,190-195; doi:10.1016/j.solmat.2017.12.004 otwiera się w nowej karcie
  24. European Commission -Joint Research Centre and Institute for Environment and 463 otwiera się w nowej karcie
  25. Sustainability, International Reference Life Cycle Data System (ILCD) Handbook - 464 General guide for Life Cycle Assessment -Detailed guidance. 2010
  26. Kulczycka, J., Pietrzyk-Sokulska, E., Góralczyk, M., Konieczna, R., Spielmann, M., & 466 otwiera się w nowej karcie
  27. Merl, A., Opracowanie metodyki LCA dla oceny projektów infrastrukturalnych. Kraków 467 2008
  28. De Schryver, A. M. , Value choices in life cycle impact assessment. Radboud University 469 otwiera się w nowej karcie
  29. Strachala, D., Hylský, J., Vanĕk, J., Fafilek, G., & Jandová, K. Methods for recycling 477 photovoltaic modules and their impact on environment and raw material extraction. Acta 478 otwiera się w nowej karcie
  30. Montanistica Slovaca 2017, 22(3), 257-269
  31. Klugmann-Radziemska E., Ostrowski P., Kozera F., Method and device for controlled 480 and automatic recovery of materials from silicon photovoltaic cells, PL Patent No. 481 215770, January 24, 2014 otwiera się w nowej karcie
  32. Klugmann-Radziemska, E., Ostrowski, P., Drabczyk, K., Panek, P., & Szkodo, M. 483 (2010). Experimental validation of crystalline silicon solar cells recycling by thermal and 484 chemical methods. Solar Energy Materials and Solar Cells, 94(12), 2275-2282. otwiera się w nowej karcie
  33. https://doi.org/10.1016/j.solmat.2010.07.025 otwiera się w nowej karcie
  34. Jungbluth, N., Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent 487 database, Progress in Photovoltaics: Research and Applications (2005) 13(8) p. 429-446 488 otwiera się w nowej karcie
  35. Marina M. Lunardi, J. P. Alvarez-Gaitan, J. I. Bilbao, Richard Corkish, Comparative 489 otwiera się w nowej karcie
  36. Life Cycle Assessment of End-of-Life Silicon Solar Photovoltaic Modules, Appl. Sci. 490 2018, 8, 1396; doi:10.3390/app8081396 otwiera się w nowej karcie
  37. Heath, G., Woodhouse, M., & Engel-Cox, J; Value of Recycling PV Modules, Market 492 Size and Need for Design for Recycling. DuraMat workshop Stanford, CA. 2017
  38. End-of-Life Management, Solar Photovoltaic Panels, International Renewable Energy 494 otwiera się w nowej karcie
  39. Agency IRENA, IEA International Energy Agency 2016 otwiera się w nowej karcie
  40. Gopal G.N., Dubey S., Fundamentals of Photovoltaic Modules and their Applications, 496
  41. Royal Society of Chemistry 2010 otwiera się w nowej karcie
  42. Bogacka M., Pikoń K., Landrat M., Environmental impact of PV cell waste scenario, otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 106 razy

Publikacje, które mogą cię zainteresować

Meta Tagi