Thermal Buckling Analysis of Circular Bilayer Graphene sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics - Publikacja - MOST Wiedzy

Wyszukiwarka

Thermal Buckling Analysis of Circular Bilayer Graphene sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics

Abstrakt

In this article, the thermal buckling behavior of orthotropic circular bilayer graphene sheets embedded in the Winkler–Pasternak elastic medium is scrutinized. Using the nonlocal elasticity theory, the bilayer graphene sheets are modeled as a nonlocal double–layered plate that contains small scale effects and van der Waals (vdW) interaction forces. The vdW interaction forces between the layers are simulated as a set of linear springs using the Lennard–Jones potential model. Using the principle of virtual work, the set of equilibrium equations are obtained based on the first-order shear deformation theory (FSDT) and nonlocal differential constitutive relation of Eringen. Differential quadrature method (DQM) is employed to solve the governing equations for simply-supported and clamped boundary conditions. Finally, the effects of the small scale parameter, vdW forces, aspect ratio, elastic foundation, and boundary conditions are considered in detail.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 1 9

    Scopus

Autorzy (3)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 35 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Journal of Applied and Computational Mechanics nr 7, strony 1862 - 1877,
ISSN: 2383-4536
Język:
angielski
Rok wydania:
2021
Opis bibliograficzny:
Ahmad Pour M., Golmakani M. E., Malikan M.: Thermal Buckling Analysis of Circular Bilayer Graphene sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics// Journal of Applied and Computational Mechanics -Vol. 7,iss. 4 (2021), s.1862-1877
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.22055/jacm.2019.31299.1859
Bibliografia: test
  1. Drexler, K.E., Nanosystems: molecular machinery, manufacturing, and computation, John Wiley & Sons, 1992.
  2. Li, M., Tang, H.X., Roukes, M.L., Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high- frequency applications, Nature Nanotechnology, 2, 2007, 114-33. otwiera się w nowej karcie
  3. Cimalla, V., Niebelschütz, F., Tonisch, K., Foerster, Ch., Brueckner, K., Cimalla, I., et al., Nanoelectromechanical devices for sensing applications, Sensors and Actuators B: Chemical, 126, 2007, 24-34. otwiera się w nowej karcie
  4. Sakhaee-Pour, A., Ahmadian, M.T., Vafai, A., Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors, Solid State Communications, 145, 2008, 168-72. otwiera się w nowej karcie
  5. Wang, J., Li, Z., Fan, G., Pan, H., Chen, Z., Zhang, D., Reinforcement with graphene nanosheets in aluminum matrix composites, Scripta Materialia, 66, 2012, 594-7. otwiera się w nowej karcie
  6. Iijima, S., Helical microtubules of graphitic carbon, Nature, 354, 1991, 56-63. otwiera się w nowej karcie
  7. Lu, B.P., Zhang, P.Q., Lee, H.P., Wang, C.M., Reddy, J.N., Non-local elastic plate theories, Proceedings of the Royal Society, A 463, 2007, 3225-40. otwiera się w nowej karcie
  8. Reddy, J.N., Microstructure-dependent couple stress theories of functionally graded beams, Journal of the Mechanics and Physics of Solids, 59, 2011, 2382-99. otwiera się w nowej karcie
  9. Akgöz, B., Civalek, Ö., A size-dependent shear deformation beam model based on the strain gradient elasticity theory, International Journal of Engineering Science, 70, 2013, 1-14. otwiera się w nowej karcie
  10. Akgöz, B., Civalek, Ö., Buckling analysis of functionally graded microbeams based on the strain gradient theory, Acta Mechanica, 224, 2013, 2185-201. otwiera się w nowej karcie
  11. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P., Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51, 2003, 1477-508. otwiera się w nowej karcie
  12. Akgöz, B., Civalek, Ö., Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory, Archive of Applied Mechanics, 82, 2012, 423-443. otwiera się w nowej karcie
  13. Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S., Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory, Journal of Sound and Vibration, 331, 2012, 94-106. otwiera się w nowej karcie
  14. Akgöz, B., Civalek, Ö., Strain gradient elasticity, and modified couple stress models for buckling analysis of axially loaded micro-scaled beams, International Journal of Engineering Science, 49, 2011, 1268-80. otwiera się w nowej karcie
  15. Akgöz, B., Civalek, Ö., Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories, Journal of Computational and Theoretical Nanoscience, 8, 2011, 1821-1827. otwiera się w nowej karcie
  16. Akgöz, B., Civalek, Ö., Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory, Composite Structures, 98, 2013, 314-22. otwiera się w nowej karcie
  17. Akgöz, B., Civalek, Ö., Modeling, and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory, Meccanica, 48, 2013, 863-873. otwiera się w nowej karcie
  18. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P., Couple stress based strain gradient theory for elasticity, International Journal of Solids Structures, 39, 2002, 2731-43. otwiera się w nowej karcie
  19. Malikan, M., Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first-order shear deformation theory, Applied Mathematical Modelling, 48, 2017, 196-207. otwiera się w nowej karcie
  20. Malikan, M., Analytical predictions for the buckling of a nanoplate subjected to non-uniform compression based on the four-variable plate theory, Journal of Applied and Computational Mechanics, 3, 2017, 218-228. otwiera się w nowej karcie
  21. Malikan, M., Buckling analysis of a micro composite plate with nano-coating based on the modified couple stress theory, Journal of Applied and Computational Mechanics, 4, 2018, 1-15. otwiera się w nowej karcie
  22. Malikan, M., Temperature influences on shear stability of a nanosize plate with piezoelectricity effect, Multidiscipline Modeling in Materials and Structures, 14, 2018, 125-142. otwiera się w nowej karcie
  23. Malikan, M., Electro-thermal buckling of elastically supported double-layered piezoelectric nanoplates affected by an external electric voltage, Multidiscipline Modeling in Materials and Structures, 15, 2019, 50-78. otwiera się w nowej karcie
  24. Eringen, A.C., Edelen, D.G.B., On nonlocal elasticity, International Journal of Engineering Science,10, 1972, 233-48. otwiera się w nowej karcie
  25. Eringen, A.C., On differential equations of nonlocal elasticity, solutions of screw dislocation, surface waves, Journal of Applied Physics, 54, 1983, 4703-10. otwiera się w nowej karcie
  26. Eringen, A.C., Nonlocal continuum field theories, New York, Springer, 2002. otwiera się w nowej karcie
  27. Eringen, A.C., Nonlocal continuum mechanics based on distributions, International Journal of Engineering Science, 44, 2006, 141-7. otwiera się w nowej karcie
  28. Malikan, M., Jabbarzadeh, M., Dastjerdi, Sh., Non-linear Static stability of bi-layer carbon nanosheets resting on an elastic matrix under various types of in-plane shearing loads in thermo-elasticity using nonlocal continuum, Microsystem Technologies, 23, 2017, 2973-2991. otwiera się w nowej karcie
  29. Malikan, M., Nguyen, V.B., A novel one-variable first-order shear deformation theory for biaxial buckling of a size- dependent plate based on the Eringen‫׳‬s nonlocal differential law, World Journal of Engineering, 15, 2018, 633-645. otwiera się w nowej karcie
  30. Malikan, M., On the buckling response of axially pressurized nanotubes based on a novel nonlocal beam theory, Journal of Applied and Computational Mechanics, 5, 2019, 103-112. otwiera się w nowej karcie
  31. Malikan, M., Tornabene, F., Dimitri, R., Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals, Materials Research Express, 5, 2018, 095006. otwiera się w nowej karcie
  32. Golmakani, M.E., Malikan, M., Sadraee Far, M.N., Majidi, H.R., Bending and buckling formulation of graphene sheets based on nonlocal simple first-order shear deformation theory, Materials Research Express, 5, 2018, 065010. otwiera się w nowej karcie
  33. Malikan, M., Sadraee Far, M.N., Differential quadrature method for dynamic buckling of graphene sheet coupled by a viscoelastic medium using neperian frequency based on nonlocal elasticity theory, Journal of Applied and Computational Mechanics, 4, 2018, 147-160.
  34. Sadraee Far, M.N., Golmakani, M.E., Large deflection of thermo-mechanical loaded bilayer orthotropic graphene sheet in/on polymer matrix based on nonlocal elasticity theory, Computers and Mathematics with Applications, 76, 2018, 2061-89. otwiera się w nowej karcie
  35. Ansari, R., Torabi, J., Nonlocal vibration analysis of circular double-layered graphene sheets resting on an elastic foundation subjected to thermal loading, Acta Mechanica Sinica, 32, 2016, 841-853. otwiera się w nowej karcie
  36. Dastjerdi, Sh., Akgöz, B., Yazdanparast, L., A new approach for bending analysis of bilayer conical graphene panels considering nonlinear van der Waals force, Composites Part B: Engineering, 150, 2018, 124-134. otwiera się w nowej karcie
  37. Demir, C., Civalek, Ö., Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models, Applied Mathematical Modelling, 37, 2013, 9355-9367. otwiera się w nowej karcie
  38. Pradhan, S.C., Kumar, A., Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method, Composite Structures, 93, 2011, 774-779. otwiera się w nowej karcie
  39. Prasanna, T.J., Kumar, S., Gopalakrishnan, N.S., Thermal vibration analysis of monolayer graphene embedded in elastic medium based on nonlocal continuum mechanics, Composite Structures, 100, 2013, 332-342.
  40. Numanoğlu, H.M., Akgöz, B., Civalek, Ö., On dynamic analysis of nanorods, International Journal of Engineering Science, 130, 2018, 33-50. otwiera się w nowej karcie
  41. She, G.L., Yuan, F.G., Ren, Y.R., Xiao, W.Sh., On buckling and post-buckling behavior of nanotubes, International Journal of Engineering Science, 121, 2018, 130-142. otwiera się w nowej karcie
  42. Malikan, M., Nguyen, V.B., Buckling analysis of piezo-magnetoelectric nanoplates in a hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory, Physica E: Low- dimensional Systems and Nanostructures, 102, 2018, 8-28. otwiera się w nowej karcie
  43. Malikan, M., Nguyen, V.B., Tornabene, F., Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory, Materials Research Express, 5, 2018, 075031. otwiera się w nowej karcie
  44. Malikan, M., Nguyen, V.B., Tornabene, F., Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory, Engineering Science and Technology, an International Journal, 21, 2018, 778-786. otwiera się w nowej karcie
  45. Malikan, M., Dimitri, R., Tornabene, F., Effect of Sinusoidal Corrugated Geometries on the Vibrational response of Viscoelastic Nanoplates, Applied Sciences, 8, 2018, 1432. otwiera się w nowej karcie
  46. Malikan, M., Nguyen, V.B., Dimitri, R., Tornabene, F., Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory, Materials Research Express, 6, 2019, 075041. otwiera się w nowej karcie
  47. Malikan, M., Dimitri, R., Tornabene, F., Transient response of oscillated carbon nanotubes with internal and exte rnal damping, Composites Part B Engineering, 158, 2019, 198-205. otwiera się w nowej karcie
  48. She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B., Xiao, W.Sh., Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory, Composite Structures, 203, 2018, 614-23. otwiera się w nowej karcie
  49. Shen, L., Shen, H.S., Zhang, C.L., Nonlocal plate model for nonlinear vibration of single-layer graphene sheets in thermal environments, Computational Materials Science, 48, 2010, 680-5. otwiera się w nowej karcie
  50. Pradhan, S.C., Kumar, A., Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method, Computational Materials Science, 50, 2010, 239-45. otwiera się w nowej karcie
  51. Akgöz, B., Civalek, Ö., Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory, Materials and Design, 42, 2012, 164-71. otwiera się w nowej karcie
  52. Mohammadi, M., Ghayour, M., Farajpour, A., Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model, Composites Part B: Engineering, 45, 2013, 32-42. otwiera się w nowej karcie
  53. Asemi, S.R., Farajpour, A., Decoupling the nonlocal elasticity equations for thermo-mechanical vibration of circular graphene sheets including surface effects, Physica E, 60, 2014, 80-90. otwiera się w nowej karcie
  54. Ansari, R., Mohammadi, V., Shojaei, M.F., Gholami, R., Sahmani, S., Surface stress effect on the post-buckling and free vibrations of axisymmetric circular Mindlin nanoplates subject to various edge supports Composite Structures, 112, 2014, 358-67. otwiera się w nowej karcie
  55. Pradhan, S.C., Murmu, T., Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory, Physica E, 42, 2010, 1293-301. otwiera się w nowej karcie
  56. Malekzadeh, P., Setoodeh, A.R., Alibeygi, A., Small scale effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in an elastic medium, Composite Structures, 93, 2011, 2083-9. otwiera się w nowej karcie
  57. Karamooz Ravari, M.R., Shahidi, A.R., Axisymmetric buckling of the circular annular nanoplates using finite difference method, Meccanica, 48, 2013, 135-144. otwiera się w nowej karcie
  58. Bedroud, M., Hosseini-Hashemi, S., Nazemnezhad, R., Buckling of circular/annular Mindlin nanoplates via nonlocal elasticity, Acta Mechanica, 224, 2013, 2663-76. otwiera się w nowej karcie
  59. Farajpour, A., Mohammadi, M., Shahidi, A.R., Mahzoon, M., Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model, Physica E, 43, 2011, 1820-5. otwiera się w nowej karcie
  60. Golmakani, M.E., Rezatalab, J., Nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on nonlocal Mindlin plate theory, Composite Structures, 119, 2015, 238-250. otwiera się w nowej karcie
  61. Farajpour, A., Dehghany, M., Shahidi, A.R., Surface and nonlocal effects on the axisymmetric buckling of circular graphene sheets in thermal environment, Composites Part B: Engineering, 50, 2013, 333-43. otwiera się w nowej karcie
  62. Golmakani, M.E., Vahabi, H., Nonlocal buckling analysis of functionally graded annular nanoplates in an elastic medium with various boundary conditions, Microsystem Technologies, 23, 2017, 3613-3628. otwiera się w nowej karcie
  63. Golmakani, M.E., Rezatalab, J., Nonlinear bending analysis of orthotropic nanoscale plates in an elastic matrix based on nonlocal continuum mechanics, Composite Structures, 111, 2014, 85-97. otwiera się w nowej karcie
  64. Golmakani, M.E., Sadraee Far, M.N., Nonlinear thermo-elastic bending behavior of graphene sheets embedded in an elastic medium based on nonlocal elasticity theory, Computers and Mathematics with Applications, 72, 2016, 785-805. otwiera się w nowej karcie
  65. Sobhy, M., Thermomechanical bending and free vibration of single-layered graphene sheets embedded in an elastic medium, Physica E, 56, 2014, 400-9. otwiera się w nowej karcie
  66. Sedighi, H. M., Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory, Acta Astronautica, 95, 2014, 111-123. otwiera się w nowej karcie
  67. Sedighi, H. M., Koochi, A., Daneshmand, F., Abadyan, M., Non-linear dynamic instability of a double-sided nano- bridge considering centrifugal force and rarefied gas flow, International Journal of Non-Linear Mechanics, 77, 2015, 96-106. otwiera się w nowej karcie
  68. Sedighi, H. M., Bozorgmehri, A., Dynamic instability analysis of doubly clamped cylindrical nanowires in the presence of Casimir attraction and surface effects using modified couple stress theory, Acta Mechanica, 227(6), 2016, 227- 1575. otwiera się w nowej karcie
  69. Ouakad, H. M., Sedighi, H. M., Younis, M. I., One-to-One and Three-to-One Internal Resonances in MEMS Shallow Arches, Journal of Computational and Nonlinear Dynamics, 12(5), 2017, 051025. otwiera się w nowej karcie
  70. Koochi, A., Sedighi, H. M., Abadyan, M. R., Modeling the size-dependent pull-in instability of beam-type NEMS using strain gradient theory, Latin American Journal of Solids and Structures, 11, 2014, 1679-7825. otwiera się w nowej karcie
  71. Dastjerdi, Sh., Jabbarzadeh, M., Nonlinear bending analysis of bilayer orthotropic graphene sheets resting on Winkler-Pasternak elastic foundation based on nonlocal continuum mechanics, Composites Part B: Engineering, 87, 2016, 161-75. otwiera się w nowej karcie
  72. Xu, Y.-M., Shen, H.-S., Zhang, C.-L., Nonlocal plate model for nonlinear bending of bilayer graphene sheets subjected to transverse loads in thermal environments, Composite Structures, 98, 2013, 294-302. otwiera się w nowej karcie
  73. Pradhan, S.C., Phadikar, J.K., Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models, Physics Letters A, 373, 2009, 1062-9. otwiera się w nowej karcie
  74. Ansari, R., Rajabiehfard, R., Arash, B., Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets, Computational Materials Science, 49, 2010, 831-8. otwiera się w nowej karcie
  75. Jomehzadeh, E., Saidi, A.R., A study on large amplitude vibration of multilayered graphene sheets, Computational Materials Science, 50, 2011, 1043-51. otwiera się w nowej karcie
  76. Pouresmaeeli, S., Fazelzadeh, S.A., Ghavanloo, E., Exact solution for nonlocal vibration of double orthotropic nanoplates embedded in elastic medium, Composites Part B: Engineering, 43, 2012, 3384-90. otwiera się w nowej karcie
  77. Anjomshoa, A., Shahidi, A.R., Hassani, B., Jomehzadeh, E., Finite element buckling analysis of multilayered graphene sheets on elastic substrate based on nonlocal elasticity theory, Applied Mathematical Modeling, 38, 2014, 5934-55. otwiera się w nowej karcie
  78. Murmu, T., Sienz, J., Adhikari, S., Arnold, C., Nonlocal buckling of double-nanoplate-systems under biaxial compression, Composites Part B: Engineering, 44, 2014, 84-94. otwiera się w nowej karcie
  79. Radic, N., Jeremic, D., Trifkovic, S., Milutinovic, M., Buckling analysis of double-orthotropic nanoplates embedded in Pasternak elastic medium using nonlocal elasticity theory, Composites Part B: Engineering, 61, 2014, 162-71. otwiera się w nowej karcie
  80. Golmakani, M.E., Sadraee Far, M.N., Buckling analysis of biaxially compressed double-layered graphene sheets with various boundary conditions based on nonlocal elasticity theory, Microsystem Technologies, 23(6), 2017, 2145-2165. otwiera się w nowej karcie
  81. Asemi, S.R., Farajpour, A., Borghei, M., Hassani, A.H., Thermal effects on the stability of circular graphene sheet via nonlocal continuum mechanics, Latin American Journal of Solids and Structures, 11, 2014, 704-24. otwiera się w nowej karcie
  82. Bellman, R.E., Casti, J., Differential quadrature and long-term integration, Journal of Mathematical Analysis and Applications, 34, 1971, 235-8. otwiera się w nowej karcie
  83. Bellman, R.E., Kashef, B.G., Casti, J., Differential Quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equation, Journal of Computational Physics, 10, 2018, 40-52. otwiera się w nowej karcie
  84. Mahinzare, M., Ranjbarpur, H., Ghadiri, M., Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate, Mechanical Systems, and Signal Processing, 100, 2018 , 188-207. otwiera się w nowej karcie
  85. Mahinzare, M., Jannat Alipour, M., Sadatsakkak, S. A., Ghadiri, M., A nonlocal strain gradient theory for dynamic modeling of a rotary Thermo piezoelectrically actuated nano FG circular plate, Mechanical Systems and Signal Processing, 115, 2019, 323-337. otwiera się w nowej karcie
  86. Watson, D. W., Karageorghis, A., Chen, C. S., The radial basis function-differential quadrature method for ellipt ic problems in annular domains, Journal of Computational and Applied Mathematics, 363, 2020, 53-76. otwiera się w nowej karcie
  87. Lal, R., Saini, R., Vibration analysis of FGM circular plates under non-linear temperature variation using generalized differential quadrature rule, Applied Acoustics, 158, 2020, 107027. ORCID iD M.E. Golmakani https://orcid.org/0000-0002-0080-7168 otwiera się w nowej karcie
  88. M. Malikan https://orcid.org/0000-0001-7356-2168
  89. © 2020 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/). otwiera się w nowej karcie
  90. How to cite this article: Ahmad Pour M., Golmakani M.E., Malikan M. Thermal Buckling Analysis of Circular Bilayer Graphene Sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics, J. Appl. Comput. Mech., 7(1), 2021, x-xx. https://doi.org/10.22055/JACM.2019.31299.1859 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 110 razy

Publikacje, które mogą cię zainteresować

Meta Tagi