Thermodynamic modeling of combustion process of the internal combustion engines – an overview - Publikacja - MOST Wiedzy

Wyszukiwarka

Thermodynamic modeling of combustion process of the internal combustion engines – an overview

Abstrakt

The mathematical description of combustion process in the internal combustion engines is a very difficult task, due to the variety of phenomena that occurring in the engine from the moment when the fuel-air mixture ignites up to the moment when intake and exhaust valves beginning open. Modeling of the combustion process plays an important role in the engine simulation, which allows to predict incylinder pressure during the combustion, engine performance and environmental impact with high accuracy. The toxic emissions, which appears as a result of fuels combustion, are one of the main environmental problem and as a result the air pollutant regulations are increasingly stringent, what makes the investigation of the combustion process to be a relevant task.

Cytowania

  • 6

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 367 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Opublikowano w:
Combustion Engines nr 178, strony 27 - 37,
ISSN: 2300-9896
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Stepanenko D., Kneba Z.: Thermodynamic modeling of combustion process of the internal combustion engines – an overview// Combustion Engines. -Vol. 178., iss. 3 (2019), s.27-37
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.19206/ce-2019-306
Bibliografia: test
  1. AVL. AVL-Boost Software Combustion Models, User Man., 2015. otwiera się w nowej karcie
  2. AWAD, S., VARUVEL, E.G., LOUBAR, K., TAZEROUT, M. Single zone combustion modeling of biodiesel from wastes in diesel engine. Fuel. 2013, 106, 558-568. otwiera się w nowej karcie
  3. BARATTA, M., FERRARI, A., ZHANG, Q. Multi-zone thermodynamic modeling of combustion and emission for- mation in CNG engines using detailed chemical kinetics. Fuel. 2018, 231, 396-403. otwiera się w nowej karcie
  4. BROEKAERT, S., DE CUYPER, T., DE PAEPE, M., VERHELST, S. Evaluation of empirical heat transfer mod- els for HCCI combustion in a CFR engine. Appl. Energy. 2017, 205, 1141-1150. otwiera się w nowej karcie
  5. CLAYWELL, M. Coupled WAVE coupled WAVE- VECTIS simulation of an intake simulation of an intake re- stricted engine. otwiera się w nowej karcie
  6. CRIPPA, M., GRANIER, C. Forty years of improvements in European air quality: regional policy-industry interactions with global impacts. Atmos. Chem. Phys. 2016. 16(6), 3825- 3841. otwiera się w nowej karcie
  7. BIELACZYC, P., WOODBURN, J. Current directions in LD powertrain technology in response to stringent exhaust emissions and fuel efficiency requirements. 2016, 166(3), 62-75. otwiera się w nowej karcie
  8. European Parliament, Council of the European Union. Regu- lation (EC) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on type approval of motor ve- hicles with respect to emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and on access to vehicle repair and mai. Off. J. Eur. Union. 2007, L171, 1-16. otwiera się w nowej karcie
  9. FAGUNDEZ, J.L.S., SARI, R.L., MARTINS, M.E.S., SALAU, N.P.G. Comparative analysis of different heat transfer correlations in a two-zone combustion model ap- plied on a SI engine fueled with wet ethanol. Appl. Therm. Eng. 2017, 115, 22-32. otwiera się w nowej karcie
  10. FATHI, M., SOMERS, B. Stand-alone single-and multi- zone modeling of direct injection homogeneous charge compression ignition (DI-HCCI) combustion engines. Appl. Therm. Eng. 2017, 125, 1181-1190. otwiera się w nowej karcie
  11. GRABOWSKI, Ł., PIETRYKOWSKI, K., WENDEKER, M. AVL simulation tools practical applications. 2017. 2012.
  12. GUIZZETTI, M., ITALIA, F.A.P. Combined WAVE- VECTIS simulation of an intake manifold of V6 PFI gaso- line engine. 1-15.
  13. HU, S., WANG, H., YANG, C., WANG, Y. Burnt fraction sensitivity analysis and 0-D modelling of common rail diesel engine using Wiebe function. Appl. Therm. Eng. 2017, 115, 170-177. otwiera się w nowej karcie
  14. ILIEV, S.P. Developing of a 1-D combustion model and study of engine characteristics using ethanol-gasoline blends. Proc. World Congr. Eng. 2014, II, 1-6. otwiera się w nowej karcie
  15. KABANOV, O. Choosing of calculation method for heat trans- fer process in gas engine with spark ignition. 2012, 96-102. otwiera się w nowej karcie
  16. KAVTARADZE, R.Z. IC engines theory. Book for universi- ties. N.E. Bauman, Moscow 2008. otwiera się w nowej karcie
  17. KÉROMNÈS, A. Internal combustion engine modeling. 2017.
  18. LOGANATHAN, S., LEENUS, J.M., NAGALINGAM, B., PRABHU, L. Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function. Energy. 2018, 150, 77-91. otwiera się w nowej karcie
  19. LOUNICI, M.S., LOUBAR, K., BALISTROU, M., TAZE- ROUT, M. Investigation on heat transfer evaluation for a more efficient two-zone combustion model in the case of natural gas SI engines. Appl. Therm. Eng. 2011, 31(2-3), 319-328. otwiera się w nowej karcie
  20. MAROTEAUX, F., SAAD, C. Diesel engine combustion modeling for hardware in the loop applications: effects of ignition delay time model. Energy. 2013, 57, 641-652. otwiera się w nowej karcie
  21. MAROTEAUX, F., SAAD, C., AUBERTIN, F. Develop- ment and validation of double and single Wiebe function for multi-injection mode Diesel engine combustion modelling for hardware-in-the-loop applications. Energy Convers. Manag. 2015, 105, 630-641. otwiera się w nowej karcie
  22. NOBAKHT, A.Y., KHOSHBAKHI, S.R., RAHIMI, A. A parametric study on natural gas fueled HCCI combustion engine using a multi-zone combustion model. Fuel. 2011, 90(4), 1508-1514. otwiera się w nowej karcie
  23. RAKOPOULOS, C.D., RAKOPOULOS, D.C., MAVROPOU- LOS, G.C., KOSMADAKIS, G.M. Investigating the EGR rate and temperature impact on diesel engine combustion and emis- sions under various injection timings and loads by comprehen- sive two-zone modeling. Energy. 2018, 157, 990-1014. otwiera się w nowej karcie
  24. Ricardo. "Ricardo software WAVE," User Man., 2016.
  25. SHAHBAKHTI, M., KOCH, C.R. Thermo-kinetic com- bustion modeling of an HCCI engine to analyze ignition timing for control applications. Spring Tech. Meet. Combust. Institute/Canadian Sect. 2007, 1-7. otwiera się w nowej karcie
  26. SONG, R., SCHOCK, H. A control-oriented model of turbu- lent jet ignition combustion in a rapid compression machine. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2017, 231(10), 1315-1325. otwiera się w nowej karcie
  27. SORUSBAY, C., SOYHAN, H.S. Double-Wiebe function: an approach for single-zone HCCI engine modeling. Appl. Therm. Eng. 2007, 28(11-12), 1284-1290.
  28. STONE, R. Introduction to internal combustion engines. 3. Springer 1999. otwiera się w nowej karcie
  29. SUN, Y., WANG, H., YANG, C., WANG, Y. Development and validation of a marine sequential turbocharging diesel engine combustion model based on double Wiebe function and partial least squares method. Energy Convers. Manag. 2017, 151, 481-495. otwiera się w nowej karcie
  30. VERHELST, S., SHEPPARD, C.G.W. Multi-zone thermo- dynamic modelling of spark-ignition engine combustion -an overview. Energy Convers. Manag. 2009, 50(5), 1326-1335. otwiera się w nowej karcie
  31. YANG, X., ZHU, G.G. A control-oriented hybrid com- bustion model of a homogeneous charge compression igni- tion capable spark ignition engine. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2012, 226(10), 1380-1395. otwiera się w nowej karcie
  32. YILDIZ, M., ALBAYRAK ÇEPER, B. Zero-dimensional single zone engine modeling of an SI engine fuelled with methane and methane-hydrogen blend using single and dou- ble Wiebe function: a comparative study. Int. J. Hydrogen Energy. 2017, 42(40), 25756-25765.
  33. Denys Stepanenko, MEng. -Faculty of Mechanical Engineering, Gdansk University of Technology. e-mail: denstepa@student.pg.edu.pl Zbigniew Kneba, DSc., DEng. -Faculty of Mecha- nical Engineering, Gdansk University of Technology. e-mail: zkneba@pg.edu.pl otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 183 razy

Publikacje, które mogą cię zainteresować

Meta Tagi