Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field - Publikacja - MOST Wiedzy

Wyszukiwarka

Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field

Abstrakt

This paper considers a single-walled composite nano-shell (SWCNS) exposed in a torsional critical stability situation. As the magnetic field affects remarkably nanostructures in the small size, a three-dimensional magnetic field is assessed which contains magnetic effects along the circumferential, radial and axial coordinates system. Based on the results of the nonlocal model of strain gradient small-scale approach and the first-order shear deformation shell theory (FSDST), the problem is estimated. Afterward, the numerical results are taken analytically and compared with other existing literature. Hereafter, the influences of various factors, such as the magnetic field, are discussed deeply. It is observed that when the magnetic field is studied in three dimensions, the transverse magnetic effect is the most serious factor that affects fundamentally the torsional stability of the shell.

Cytowania

  • 1 0 7

    CrossRef

  • 0

    Web of Science

  • 1 1 6

    Scopus

Autorzy (3)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 38 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE nr 148, strony 1 - 14,
ISSN: 0020-7225
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Malikan M., Krasheninnikov M., Eremeev V.: Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field// INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE -Vol. 148, (2020), s.1-14
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.ijengsci.2019.103210
Bibliografia: test
  1. Akbarzadeh Khorshidi, M. (2018). The material length scale parameter used in couple stress theories is not a material constant. International Journal of Engineering Science, 133 , 15-25 .
  2. Akgöz, B. , & Civalek, Ö. (2012). Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Materials & Design, 42 , 164-171 . otwiera się w nowej karcie
  3. Arefi, M. , Kiani, M. , & Rabczuk, T. (2019). Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets. Composites Part B: Engineering, 168 , 320-333 . otwiera się w nowej karcie
  4. Chowdhurry, A. N. R. , Wang, C. M. , & Koh, S. J. A. (2014). Continuum shell model for buckling of armchair carbon nanotubes under compression or torsion. International Journal of Applied Mechanics, 6 (1), 1450 0 06 .
  5. Elimelech, M., Gregory, J., Jia, X., & Williams, R. A. (1995). Chapter 15 -Application of simulation techniques to colloidal dispersion systems. Particle Depo- sition & Aggregation, Measurement, Modelling and Simulation , 402-425. doi: 10.1016/B978-075067024-1/50015-7 . otwiera się w nowej karcie
  6. Eringen, A. C. (1983). On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics, 54 (9), 4703-4710 . otwiera się w nowej karcie
  7. Farajpour, A. , Ghayesh, M. H. , & Farokhi, H. (2019). Nonlocal nonlinear mechanics of imperfect carbon nanotubes. International Journal of Engineering Science, 142 , 201-215 . otwiera się w nowej karcie
  8. Gholami, R. , & Ansari, R. (2017). A unified nonlocal nonlinear higher-order shear deformable plate model for postbuckling analysis of piezoelectric-piezo- magnetic rectangular nanoplates with various edge supports. Composite Structures, 166 , 202-218 . otwiera się w nowej karcie
  9. Gholami, R. , Darvizeh, A. , Ansari, R. , & Sadeghi, F. (2016). Vibration and buckling of first-order shear deformable circular cylindrical micro-/nano-shells based on Mindlin's strain gradient elasticity theory. European Journal of Mechanics -A/Solids, 58 , 76-88 . otwiera się w nowej karcie
  10. Ghorbanpour Arani, A. , Abdollahian, M. , Kolahchi, R. , & Rahmati, A. H. (2013). Electro-thermo-torsional buckling of an embedded armchair DWBNNT using nonlocal shear deformable shell model. Composites: Part B, 51 , 291-299 . otwiera się w nowej karcie
  11. Han, Q. , & Lu, G. (2003). Torsional buckling of a double-walled carbon nanotube embedded in an elastic medium. European Journal of Mechanics A/Solids, 22 (6), 875-883 . otwiera się w nowej karcie
  12. Hao, M. J. , Guo, X. M. , & Wang, Q. (2010). Small-scale effect on torsional buckling of multi-walled carbon nanotubes. European Journal of Mechanics A/Solids, 29 (1), 49-55 . otwiera się w nowej karcie
  13. Jeong, B.-W. , Lim, J.-K. , & Sinnott, S. B. (2007). Elastic torsional responses of carbon nanotube systems. Journal of Applied Physics, 101 , 084309 . Karami, B. , Shahsavari, D. , & Janghorban, M. (2019). On the dynamics of porous doubly-curved nanoshells. International Journal of Engineering Science, 143 , 39-55 .
  14. Khademolhosseini, F. , Rajapakse, R. K. N. D. , & Nojeh, A. (2010). Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models. Compu- tational Materials Science, 48 (4), 736-742 . otwiera się w nowej karcie
  15. Kok, Z. K. J. , & Wong, C. H. (2016). Molecular dynamics simulation studies of mechanical properties of different carbon nanotube systems. Molecular Simu- lation, 42 (15), 1274-1280 . otwiera się w nowej karcie
  16. Lim, C. W. , Zhang, H. , & Reddy, J. N. (2015). A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78 , 298-313 . otwiera się w nowej karcie
  17. Lu, Y. J. , & Wang, X. (2006). Combined torsional buckling of multi-walled carbon nanotubes. Journal of Physics D: Applied Physics, 39 (15), 3380-3387 . otwiera się w nowej karcie
  18. Lurie, S. , & Solyaev, Y. (2019a). On the formulation of elastic and electroelastic gradient beam theories. Continuum Mechanics and Thermodynamics, 31 (6), 1601-1613 . otwiera się w nowej karcie
  19. Lurie, S. , & Solyaev, Y. (2019b). Anti-plane inclusion problem in the second gradient electroelasticity theory. International Journal of Engineering Science, 144 , 103129 . otwiera się w nowej karcie
  20. Malikan, M. (2017). Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory. Applied Mathematical Modelling, 48 , 196-207 . otwiera się w nowej karcie
  21. Malikan, M. , Dimitri, R. , & Tornabene, F. (2019). Transient response of oscillated carbon nanotubes with an internal and external damping. Composites Part B: Engineering, 158 , 198-205 . otwiera się w nowej karcie
  22. Malikan, M. , & Nguyen, V. B. (2018). Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory. Physica E: Low-dimensional Systems and Nanostructures, 102 , 8-28 . otwiera się w nowej karcie
  23. Mehralian, F. , Tadi Beni, Y. , & Karimi Zeverdejani, M. (2017). Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes. Physica B: Physics of Condensed Matter, 514 , 61-69 . otwiera się w nowej karcie
  24. Mikhasev, G., & Nobili, A. (2019). On the solution of the purely nonlocal theory of beam elasticity as a limiting case of the two-phase theory. International Journal of Solids and Structures . doi: 10.1016/j.ijsolstr.2019.10.022 . otwiera się w nowej karcie
  25. Mikhasev, G. I. , Eremeyev, V. A. , Wilde, K. , & Maevskaya, S. S. (2019). Assessment of dynamic characteristics of thin cylindrical sandwich panels with magnetorheological core. Journal of Intelligent Material Systems and Structures, 30 (18-19), 2748-2769 . otwiera się w nowej karcie
  26. Natsuki, T. , Tsuchiya, T. , Ni, Q. Q. , & Endo, M. (2010). Torsional elastic instability of double-walled carbon nanotubes. Carbon, 48 (15), 4362-4368 . otwiera się w nowej karcie
  27. Parvaneh, V. , Shariati, M. , Torabi, H. , Masood, A. , & Sabeti, M. (2012). Torsional buckling behavior of SWCNTs using a molecular structural mechanics approach considering vacancy defects. Fullerenes, Nanotubes and Carbon Nanostructures, 20 (8), 709-720 . otwiera się w nowej karcie
  28. Reddy, J. N. (2007). Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science , 45 (2-8), 288-307 . otwiera się w nowej karcie
  29. Sahmani, S. , & Aghdam, M. M. (2017). Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. International Journal of Mechanical Sciences, 131-132 , 95-106 . otwiera się w nowej karcie
  30. Sahmani, S. , & Aghdam, M. M. (2018). Nonlocal strain gradient shell model for axial buckling and postbuckling analysis of magneto-electro-elastic composite nanoshells. Composites Part B: Engineering, 132 , 258-274 . otwiera się w nowej karcie
  31. She, G.-L. , Yuan, F.-G. , Karami, B. , Ren, Y.-R. , & Xiao, W.-S. (2019). On nonlinear bending behavior of FG porous curved nanotubes. International Journal of Engineering Science, 135 , 58-74 . otwiera się w nowej karcie
  32. Shen, H.-S. , & Zhang, C.-L. (2010). Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model. Composite Structures, 92 (5), 1073-1084 . otwiera się w nowej karcie
  33. Shojaeefard, M. H. , Mahinzare, M. , Safarpour, H. , Saeidi Googarchin, H. , & Ghadiri, M. (2018). Free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition. Applied Mathematical Modelling, 61 , 255-279 . otwiera się w nowej karcie
  34. Solyaev, Y. , & Lurie, S. (2019). Pure bending of a piezoelectric layer in second gradient electroelasticity theory. Acta Mechanica, 230 (12), 4197-4211 . otwiera się w nowej karcie
  35. Solyaev, Y. , Lurie, S. , Koshurina, A. , Dobryanskiy, V. , & Kachanov, M. (2019). On a combined thermal/mechanical performance of a foam-filled sandwich panels. International Journal of Engineering Science, 134 , 66-76 . otwiera się w nowej karcie
  36. Song, H.-Y. , & Zha, X.-W. (2011). Molecular dynamics study of effects of nickel coating on torsional behavior of single-walled carbon nanotube. Physica B, 406 (4), 992-995 . otwiera się w nowej karcie
  37. Wang, Q. , Quek, S. T. , & Varadan, V. K. (2007). Torsional buckling of carbon nanotubes. Physics Letters A, 367 (1-2), 135-139 . otwiera się w nowej karcie
  38. Wang, X. , Yang, H. K. , & Dong, K. (2005). Torsional buckling of multi-walled carbon nanotubes. Materials Science and Engineering A, 404 (1-2), 314-322 . otwiera się w nowej karcie
  39. Xiaohu, Y. , Yugang, S. , & Hanzhou, L. (2013). Combined torsional buckling of carbon nanotubes subjected to thermo-electro-mechanical loadings with consideration of scale effect. Key Engineering Materials, 562-565 , 744-749 .
  40. Yang, H. K. , & Wang, X. (2007). Torsional buckling of multi-wall carbon nanotubes embedded in an elastic medium. Composite Structures, 77 (2), 182-192 . otwiera się w nowej karcie
  41. Zhang, C.-L. , & Shen, H.-S. (2006). Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation. Carbon, 44 (13), 2608-2616 . otwiera się w nowej karcie
  42. Zhang, Q. W. , & Li, B. (2015). Torsional behavior of single-walled carbon nanotubes. Carbon, 94 , 826-835 . otwiera się w nowej karcie
  43. Zhang, Y. Y. , & Wang, C. M. (2008). Torsional responses of double-walled carbon nanotubes via molecular dynamics simulations. Journal of Physics: Condensed Matter, 20 (45), 455214 . otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 250 razy

Publikacje, które mogą cię zainteresować

Meta Tagi