Transport of paracetamol in swellable and relaxing polyurethane nanocomposite hydrogels - Publikacja - MOST Wiedzy

Wyszukiwarka

Transport of paracetamol in swellable and relaxing polyurethane nanocomposite hydrogels

Abstrakt

Polyurethane hydrogels are potentially attractive materials for biomedical applications. They are able to absorb large amount of water, biological fluids or active substances, and thus, they have potential to be used as absorbents or wound-healing dressings. They are also used for the controlled release of therapeutics because of their capacity to embed biologically active agents in their water-swollen network. The presence of organofillized montmorillonite (Cloisite® 30B) in polyurethane nanocomposite hydrogels remarkably improves the swelling capability, but on the other hand slows down the release process of an active substance from the matrix. The swelling of paracetamol solution by the nanocomposite matrix and the release process of this active substance from the hydrogel were investigated using gravimetric analysis and spectroscopic method. The kinetics of both these processes were accurately analyzed by the use of Korsmeyer–Peppas and modified Hopfenberg and Weibull models. In the present paper, three different nanocomposite systems with various amounts of Cloisite® 30B were studied. The results of these studies confirm beneficial impact of the nanosize effect on the drug diffusion processes in polyurethane nanocomposite hydrogels.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Autorzy (5)

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
POLYMER BULLETIN nr 77, strony 483 - 499,
ISSN: 0170-0839
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Motke M., Strankowska J., Kwela J., Józefowicz M., Strankowski M.: Transport of paracetamol in swellable and relaxing polyurethane nanocomposite hydrogels// POLYMER BULLETIN. -Vol. 77, (2020), s.483-499
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s00289-019-02755-6
Bibliografia: test
  1. Lin Ch, Metters AT (2006) Hydrogels in controlled release formulations: network design and math- ematical modeling. Adv Drug Deliv Rev 58:1379-408
  2. Howard GT (2002) Biodegradation of polyurethane: a review. Int Biodeter Biodegr 49:245-252 otwiera się w nowej karcie
  3. Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116(4):2602-63 otwiera się w nowej karcie
  4. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539-1641
  5. Frommelt H (1987) Polymers for medical applications. Macromol Symp 12:281-301 otwiera się w nowej karcie
  6. Kronenthal RL (1975) Biodegradable polymers in medicine and surgery. In: Kronenthal RL, Oser Z, Martin E (eds) Polymers in medicine and surgery. Plenum Press, Berlin otwiera się w nowej karcie
  7. Du X, Zhou J, Shi J, Xu B (2015) Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115(24):13165-307 otwiera się w nowej karcie
  8. Yoo H, Kim H (2008) Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings. J Biomed Mater Res B 85:326-333 otwiera się w nowej karcie
  9. Reddy TT, Kano A, Maruyama A, Hadano M, Takahara A (2008) Thermosensitive transparent semi-interpenetrating polymer networks for wound dressing and cell adhesion control. Biomacro- molecules 9:1313-1321 otwiera się w nowej karcie
  10. Graham N, Mc-Neil M (1984) Hydrogels for controlled drug delivery. Biomaterials 5:27-36 otwiera się w nowej karcie
  11. Petrini P, Fare S, Piva A, Tanzi MC (2003) Design, synthesis and properties of polyurethane hydro- gels for tissue engineering. J Mater Sci 14:683-686 otwiera się w nowej karcie
  12. Harris JM (1992) Introduction to biotechnical and biomedical applications of poly(ethylene glycol). In: Harris JM (ed) Poly(ethylene glycol) chemistry. Springer, New York otwiera się w nowej karcie
  13. Ianchis R, Ninciuleanu CM, Gifu IC, Alexandrescu E, Somoghi R, Gabor AR, Preda S, Nistor CL, Nitu S, Petcu C, Icriverzi M, Florian PE, Roseanu AM (2017) Novel hydrogel-advanced modified clay nanocomposites as possible vehicles for drug delivery and controlled release. Nanomaterials 7:443-462 otwiera się w nowej karcie
  14. Wong R, Ashton M, Dodou K (2015) Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics 7:305-319 otwiera się w nowej karcie
  15. Valdes O, Avila-Salas F, Marican A, Fuentealba N, Villasenor J, Arenas-Salinas M, Argandona Y, Duran-Lara EF (2018) Methamidophos removal from aqueous solutions using a super adsorbent based on crosslinked poly(vinyl alcohol) hydrogel. J Appl Polym Sci 135:45964-45974 otwiera się w nowej karcie
  16. Miotke M, Strankowska J, Kwela J, Strankowski M, Piszczyk Ł, Józefowicz M, Gazda M (2017) Nanosize effect of clay mineral nanoparticles on the drug diffusion processes in polyurethane nano- composite hydrogels. Eur Phys J Plus 132:401-416 otwiera się w nowej karcie
  17. Strankowska J, Piszczyk Ł, Strankowski M, Danowska M, Szutkowski K, Jurga S, Kwela J (2013) Molecular dynamics studies of polyurethane nanocomposite hydrogels. Eur Phys J Special Top 222:2179-2186 otwiera się w nowej karcie
  18. Strankowska J, Strankowski M, Piszczyk Ł, Haponiuk J, Kwela J (2012) Mechanical, structural and diffusion studies of hydrogel polyurethane nanocomposites containing modified montmorillonite. Mater Sci Forum 714:123-129 otwiera się w nowej karcie
  19. Gorrasi G, Tortora M, Vittoria V (2005) Synthesis and physical properties of layered silicates/poly- urethane nanocomposites. J Pol Sci 43:2454-2467 otwiera się w nowej karcie
  20. Katti DR, Ghosh P, Schmidt S, Katti KS (2005) Mechanical properties of the sodium montmoril- lonite interlayer intercalated with amino acids. Biomacromolecules 6:3276-3282 otwiera się w nowej karcie
  21. Mun G, Suleimenov I, Park K, Omidian H (2010) Biomedical applications of hydrogel handbook. Springer, Berlin otwiera się w nowej karcie
  22. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97:2892-2923 otwiera się w nowej karcie
  23. Amidon GL, Lee PI (2000) Transport processes in pharmaceutical systems. Marcel Dekker Incorpo- rated, New York City otwiera się w nowej karcie
  24. Miotke M, Józefowicz M (2017) Solvatochromism of antiinflammatory drug-naproxen sodium. J Mol Liq 230:129-136 otwiera się w nowej karcie
  25. Brazel ChS, Peppas NA (1999) Dimensionless analysis of swelling of hydrophilic glassy polymers with subsequent drug release from relaxing structures. Biomaterials 20:721-732
  26. Masaro L, Zhu XX (1999) Physical models of diffusion for polymer solutions, gels and solids. Prog Polym Sci 24:731-775 otwiera się w nowej karcie
  27. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas N (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25-35 otwiera się w nowej karcie
  28. Peppas NA, Colombo P (1989) Development of disintegration forces during water penetration in porous pharmaceutical systems. J Control Release 10:245 otwiera się w nowej karcie
  29. Khare AR, Peppas NA (1995) Swelling/deswelling of anionic copolymer gels. Biomaterials 16:559-567 otwiera się w nowej karcie
  30. Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5(1):23-26 otwiera się w nowej karcie
  31. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5(2):37-42 otwiera się w nowej karcie
  32. Berens AR, Hopfenberg HB (1978) Diffusion and relaxation in glassy polymer powders: 2. Separa- tion of diffusion and relaxation parameters. Polymer 19:489-496 otwiera się w nowej karcie
  33. Peppas NA (1985) Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv 60(4):110-111
  34. Peppas NA, Sahlin JJ (1989) A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm 57:169-172 otwiera się w nowej karcie
  35. Ende MT, Peppas NA (1997) Transport of ionizable drugs and proteins in crosslinked poly(acrylic acid) and poly(acrylic acid-co-2-hydroxyethyl methacrylate) hydrogels. II. Diffusion and release studies. J Control Release 48:47-56
  36. Siepmann J, Siepmann F (2008) Mathematical modeling of drug delivery. Int J Pharm 364:328-343 otwiera się w nowej karcie
  37. Grassi M, Grassi G, Lapasin R, Colombo I (2007) Understanding drug release and absorption mech- anisms: a physical and mathematical approach. Taylor & Francis Group, New York otwiera się w nowej karcie
  38. Grassi M, Lapasin R, Pricl S, Colombo I (1996) Apparent non-Fickian release from a scleroglucan gel matrix. Chem Eng Commun 155:89-112 otwiera się w nowej karcie
  39. Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford
  40. Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293-297
  41. Langenbucher F (1972) Linearization of dissolution rate curves by Weibull distribution. J Pharm Pharmacol 24:979-981 otwiera się w nowej karcie
  42. Choudalakis G, Gotsis AD (2012) Free volume and mass transport in polymer nanocomposites. Curr Opin Colloid Interface Sci 17(3):132-140 otwiera się w nowej karcie
  43. Papadopoulou V, Kosmidis K, Vlachou M, Macheras P (2006) On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm 309:44-50 otwiera się w nowej karcie
  44. Wang Y, Wang J, Yuan Z, Han H, Li T, Li L, Guo X (2017) Chitosan cross-linked poly(acrylic acid) hydrogels: drug release control and mechanism. Colloids Surf B Biointerfaces 152:252-259 otwiera się w nowej karcie
  45. Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibili- ties and limitations. App Clay Sci 36:22-36 otwiera się w nowej karcie
  46. Mojsiewicz-Pienkowska K, Jamrógiewicz M, Zebrowska M, Mikolaszek B, Sznitowska M (2015) Double layer adhesive silicone dressing as a potential dermal drug delivery film in scar treatment. Int J Pharm 481:18-26 otwiera się w nowej karcie
  47. Liu W, Hoa SV, Pugh M (2007) Water uptake of epoxy-clay nanocomposites: model development. Compos Sci Technol 67:3308-3315 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 65 razy

Publikacje, które mogą cię zainteresować

Meta Tagi