Abstrakt
W pracy omówiono uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych ze szczególnym uwzględnieniem sieci neuronowych do predykcji finansowych oraz szacowania ratingu przedsiębiorstw. Oprócz sieci neuronowych, istotną rolę w przygotowaniu i testowaniu informatycznych systemów finansowych może pełnić programowanie genetyczne. Z tego powodu omówiono uczenie maszynowe w aplikacjach konstruowanych automatycznie. W celu uzyskania przewagi konkurencyjnej uczenie maszynowe może być wykorzystane do zarządzania zasobami samoorganizujących się mgieł i chmur obliczeniowych do realizacji obliczeń biznesowych w firmie. Opisano także wybrane zastosowania gospodarcze samoorganizujących się systemów rozproszonych, w tym odniesiono się do badań nad wiarygodnością kredytobiorców, a także wskazano na metody stosowane do szacowania ryzyka sektora bankowego. Na zakończenie przedstawiono kluczowe wnioski oraz kierunki dalszych badań.
Autorzy (2)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
- Opublikowano w:
-
Współczesna Gospodarka
nr 8,
strony 1 - 26,
ISSN: 2082-677X - Język:
- polski
- Rok wydania:
- 2017
- Opis bibliograficzny:
- Balicki J., Korłub W.: Uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych// Współczesna Gospodarka. -Vol. 8., nr. 1 (2017), s.1-26
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 230 razy