Underwater in situ local heat treatment by additional stitches for improving the weldability of steel - Publikacja - MOST Wiedzy

Wyszukiwarka

Underwater in situ local heat treatment by additional stitches for improving the weldability of steel

Abstrakt

In this paper the influence of in situ local heat treatment performed by additional stitches on the weldability of high-strength low-alloy (HSLA) S355J2C+N steel was tested. The investigated steel is characterized by high susceptibility to cold cracking. It is necessary to find a method to improve the quality of welded joints. The local heat treatment was applied as an eect of bead-on plate welding made on the face of a Tekken test joint. The specimens were made by the use of covered electrodes in the water environment. For testing weldability, Tekken test specimens were made. Then, the dierent number of the pad welds with dierent overlapping were laid on the face of the tested welds. Non-destructive (NDT) visual and penetrant tests were undertaken. During the NDT, imperfections like shape mistakes and spatters were found. Then, metallographic macro- and microscopic testing were performed. The macroscopic observations proved that water environment can generate imperfections like cracking and pores. However, for specimens with additional stitches the number of imperfections decreased. Microscopic tests proved that the proposed technique aected the structure of the heat-aected zone (HAZ). The specimens without the application of additional stitches are characterized by brittle bainitic and martensitic structure. Specimens, in which the additional stitches were applied, contain tempered martensite, fine ferrite and fine pearlite in their HAZ. It was also observed that the number of cracks decreased for in situ local heat-treatment specimens. The final step was Vickers HV10 hardness measurement. These measurements confirmed previous results. The heat from additional stitches aected the steel by significantly decreasing the hardness by 80–100 HV10. The results of experiments showed that the heat from pad welds provided microstructural changes in heat-aected zones and a decrease in the susceptibility to cold cracking, which results in improvement in the weldability of HSLA steel in wet welding conditions.

Cytowania

  • 1 5

    CrossRef

  • 1 4

    Web of Science

  • 1 4

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 52 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Applied Sciences-Basel nr 10, strony 1 - 16,
ISSN: 2076-3417
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Tomków J., Janeczek A.: Underwater in situ local heat treatment by additional stitches for improving the weldability of steel// Applied Sciences-Basel -Vol. 10,iss. 5 (2020), s.1-16
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/app10051823
Bibliografia: test
  1. Aleksić, V.; Milović, L.; Blacić, I.; Vuherer, T.; Bulatović, S. Effect of LCF on behavior and microstructure of microalloyed HSLA steel and its simulated CGHAZ. Eng. Fail. Anal. 2019, 104, 1094-1106. [CrossRef] otwiera się w nowej karcie
  2. Den Besten, H. Fatigue criteria classification, modeling, developments and trends for welded joints in marine structures. Ships Offshore Struct. 2018, 13, 787-808. [CrossRef] otwiera się w nowej karcie
  3. Hu, J. Application of long-distance microscope in crack detection in bridge construction. Acta Microsc. 2019, 28, 1151-1158.
  4. Park, J.H.; Moon, H.S. Advanced automatic welding system for offshore pipeline system with seam tracking function. Appl. Sci. 2020, 10, 324. [CrossRef] otwiera się w nowej karcie
  5. Bunaziv, I.; Olden, V.; Akselsen, O.M. Metallurgical aspects in the welding of clad pipelines-A global outlook. Appl. Sci. 2019, 9, 3118. [CrossRef] otwiera się w nowej karcie
  6. Dirisu, P.; Ganguly, S.; Mehmanparast, A.; Martina, F.; Williams, S. Analysis of fracture toughness properties of wire + arc additive manufactured high strength low alloy structural steel components. Mater. Sci. Eng. A 2019, 765, 138285. [CrossRef] otwiera się w nowej karcie
  7. Zhu, L.; Wang, Y.; Wang, S.; Zhang, Q.; Zhang, C. Research of microalloy elements to induce intragranular acicular ferrite in shipbuilding steel. Ironmak. Steelmak. 2019, 46, 499-507. [CrossRef] otwiera się w nowej karcie
  8. Law, D.W.; Nicholls, P.; Christodoulou, C. Residual protection of steel following suspension om Impressed Current Cathodic Protection system on a wharf structure. Constr. Build. Mater. 2019, 210, 48-55. [CrossRef] otwiera się w nowej karcie
  9. Dehghani, A.; Aslani, F. A review on defects in steel offshore structures and developed strengthening techniques. Structures 2019, 20, 635-657. [CrossRef] otwiera się w nowej karcie
  10. Chmielewski, T.; Hudycz, M.; Krajewski, A.; Sałaciński, T.; Skowrońska, B.;Świercz, R. Structure investigation of titanium metallization coating deposited onto AlN ceramics substrate by means of friction surfacing process. Coatings 2019, 9, 845. [CrossRef] otwiera się w nowej karcie
  11. Adamiak, M.; Czupryński, A.; Kopyść, A.; Monica, Z.; Olender, M.; Gwiazda, A. The properties of arc-sprayed aluminum coatings on armor-grade steel. Metals 2018, 8, 142. [CrossRef] otwiera się w nowej karcie
  12. Sałaciński, T.; Chmielewski, T.; Winiarski, M.; Cacko, R.;Świercz, R. Roughness of metal surface after finishing using ceramic brush tools. Adv. Mater. Sci. 2018, 18, 20-27. [CrossRef] otwiera się w nowej karcie
  13. Appl. Sci. 2020, 10, 1823 otwiera się w nowej karcie
  14. Li, C.; Dong, S.; Wang, T.; Xu, W.; Zhou, X. Numerical investigation on ultimate compressive strength of welded stiffened plates built by steel grades of S235-S390. Appl. Sci. 2019, 9, 2088. [CrossRef] otwiera się w nowej karcie
  15. Kik, T.; Moravec, J.; Nováková, I. Numerical simulations of X22CrMoV12-1 steel multilayer welding. Arch. Metall. Mater. 2019, 64, 1441-1448. [CrossRef] otwiera się w nowej karcie
  16. Winczek, J. Modeling of temperature field during multi-pass GMAW surfacing or rebuilding of steel elements taking into account the heat of the deposit metal. Appl. Sci. 2016, 7, 6. [CrossRef] otwiera się w nowej karcie
  17. Sajek, A.; Nowacki, J. Comparative evaluation of various experimental and numerical simulation methods for determination of t(8/5) cooling times in HPAW process weldments. Arch. Civ. Mech. Eng. 2018, 18, 583-591. [CrossRef] otwiera się w nowej karcie
  18. Fu, H.; Xu, B.; Xiao, Q.; Li, S.; Zhang, X.; Bian, S.; Kang, T. Effect of preheating temperature on post-weld residual stress of dissimilar steel plates. Metalurgija 2020, 59, 150-152. Available online: https://hrcak.srce.hr/ 232360 (accessed on 6 March 2020).
  19. Landowski, M. Influence of parameters of laser beam welding on structure of 2205 duplex stainless steel. Adv. Mater. Sci. 2019, 19, 21-31. [CrossRef] otwiera się w nowej karcie
  20. Świerczyńska, A. Effect of storage conditions of rutile flux cored welding wires on properties of welds. Adv. Mater. Sci. 2019, 19, 46-56. [CrossRef] otwiera się w nowej karcie
  21. Hu, Y.; Shi, Y.; Sun, K.; Shen, X. Effect of filler Si content on the microstructure and properties of underwater hyperbaric welded duplex stainless steel. J. Mater. Process. Technol. 2020, 279, 116548. [CrossRef] otwiera się w nowej karcie
  22. Hu, Y.; Shi, Y.; Shen, X.; Wang, Z. Microstructure evolution and selective corrosion resistance in underwater multi-pass 2101 duplex stainless steel welding joints. Metall. Mater. Trans. A 2018, 49, 3306-3320. [CrossRef] otwiera się w nowej karcie
  23. Guo, N.; Fu, Y.; Xing, X.; Liu, Y.; Zhao, S.; Feng, J. Underwater local dry cavity laser welding of 304 stainless steel. J. Mater. Process. Technol. 2018, 260, 146-155. [CrossRef] otwiera się w nowej karcie
  24. Rogalski, G.; Fydrych, D.; Łabanowski, J. Underwater wet repair welding of API 5L X65M pipeline steel. Pol. Marit. Res. 2017, 24, 188-194. [CrossRef] otwiera się w nowej karcie
  25. Yang, Q.; Han, Y.; Chen, J.; Dong, S.; Wu, C.; Jia, C. Visual investigation on the arc burning behaviors and features in underwater wet FCAW. J. Offshore Mech. Arct. Eng. 2020, 1-22. [CrossRef] otwiera się w nowej karcie
  26. Tomków, J.; Fydrych, D.; Rogalski, G.; Łabanowski, J. Temper bead welding of S460N steel in wet welding conditions. Adv. Mater. Sci. 2018, 18, 5-14. [CrossRef] otwiera się w nowej karcie
  27. Tomków, J.; Czupryński, A.; Fydrych, D. The abrasive wear resistance of coatings manufactured on high-strength low-alloy (HSLA) offshore steel in wet welding conditions. Coatings 2020, 10, 219. [CrossRef] otwiera się w nowej karcie
  28. Tomków, J.; Fydrych, D.; Rogalski, G.; Łabanowski, J. Effect of the welding environment and storage time of electrodes on the diffusible hydrogen content in deposited metal. Rev. Metal. 2019, 55, e140. [CrossRef] otwiera się w nowej karcie
  29. Wasim, M.; Djukic, M.B. Hydrogen embrittlement of low carbon structural steel at macro-, micro-, and nano-levels. Int. J. Hydrog. Energy 2020, 45, 2145-2156. [CrossRef] otwiera się w nowej karcie
  30. Rhode, M.; Richter, T.; Mayr, M.; Nitsche, A.; Mente, T.; Böllinghaus, T. Hydrogen diffusion in creep-resistance 9% Cr P91-multi-layer weld metal. Weld. World 2020, 64, 267-281. [CrossRef] otwiera się w nowej karcie
  31. Świerczyńska, A.; Fydrych, D.; Landowski, M.; Rogalski, G.; Łabanowski, J. Hydrogen embrittlement of X2CrNiMoCuN25-6-3 super duplex stainless steel welded joints under cathodic protection. Constr. Build. Mater. 2019, 238, 117697. [CrossRef] otwiera się w nowej karcie
  32. Wu, W.; Wang, Y.; Tao, P.; Li, X.; Gong, J. Cohesive zone modeling of hydrogen-inducted delayed intergranular fracture in high strength steels. Results Phys. 2018, 11, 591-598. [CrossRef] otwiera się w nowej karcie
  33. Wang, J.; Sun, Q.; Zhang, T.; Tao, X.; Jin, P.; Feng, J. Arc stability indexes evaluation of ultrasonic wave-assisted underwater FCAW using electrical signal analysis. Int. J. Adv. Manuf. Technol. 2019, 103, 5-8. [CrossRef] otwiera się w nowej karcie
  34. Xu, C.; Guo, N.; Zhang, X.; Chen, H.; Fu, Y.; Zhou, L. Internal characteristic of droplet and its influence on the underwater wet welding process stability. J. Mater. Process. Technol. 2020, 280, 116593. [CrossRef] otwiera się w nowej karcie
  35. Chen, H.; Guo, N.; Xu, K.; Xu, C.; Zhou, L.; Wang, G. In-situ observations of melt degassing and hydrogen removal enhanced by ultrasonics in underwater wet welding. Mater. Des. 2020, 188, 108482. [CrossRef] otwiera się w nowej karcie
  36. Fydrych, D.; Łabanowski, J.; Tomków, J.; Rogalski, G. Cold cracking of underwater wet welded S355G10+N high strength steel. Adv. Mater. Sci. 2015, 15, 48-56. [CrossRef] otwiera się w nowej karcie
  37. Tomków, J.; Fydrych, D.; Rogalski, G. Role of bead sequence in underwater welding. Materials 2019, 12, 3372. [CrossRef] [PubMed] otwiera się w nowej karcie
  38. Han, Y.; Dong, S.; Zhang, M.; Jia, C.; Zhang, M.; Wu, C. A novel underwater submerged-arc welding acquires sound quality joints for high strength marine steel. Mater. Lett. 2020, 261, 127075. [CrossRef] otwiera się w nowej karcie
  39. Wang, J.; Sun, Q.; Zhang, T.; Xu, P.; Feng, J. Experimental study of arc bubble growth and detachment from underwater wet FCAW. Weld. World 2019, 63, 1147-1759. [CrossRef] otwiera się w nowej karcie
  40. Menezes, P.; Pessoa, E.; Bracarense, A.Q. Comparison of underwater wet welding performed with silicate and polymer agglomerated electrodes. J. Mater. Process. Technol. 2019, 266, 63-72. [CrossRef] otwiera się w nowej karcie
  41. Zhang, T.; Dai, X.; Feng, J.; Hu, L. Preliminary investigation on real-time induction heating-assisted underwater wet welding. Weld. J. 2015, 94, 8-15.
  42. Rathod, D.W.; Sun, Y.; Obasi, G.C.; Roy, M.J. Effect of multiple passes on Lüders/yield plateaus, microstructure and tensile behavior of narrow-gap thick-section weld plates. J. Mater. Sci. 2019, 54, 12833-12850. [CrossRef] otwiera się w nowej karcie
  43. Górka, J. Assessment of the weldability of T-welded joints in 10 mm thick TMCP steel using laser beam. Materials 2018, 11, 1192. [CrossRef] [PubMed] otwiera się w nowej karcie
  44. Skowrońska, B.; Chmielewski, T.; Golański, D.; Szulc, J. Weldability of S700MC steel welded with the hybrid plasma + MAG method. Manuf. Rev. 2020, 7, 4. [CrossRef] otwiera się w nowej karcie
  45. Tomków, J.; Janeczek, A. The influence of the welding environment on the properties of Tekken joints made from S355J2C+N steel. Weld. Technol. Rev. 2019, 91, 8-12. [CrossRef] otwiera się w nowej karcie
  46. A Classification of Coated Rod Electrodes for Arc Welding of Unalloyed Steel and Fine-Grained Steel; ISO 2560; ISO: Geneva, Switzerland, 1908. otwiera się w nowej karcie
  47. Destructive Tests on Welds in Metallic Materials-Cold Cracking Tests for Weldments-Arc Welding Processes; otwiera się w nowej karcie
  48. Non-Destructive Testing of Welds-Visual Testing of Fusion-Welded Joints; otwiera się w nowej karcie
  49. Non-Destructive Testing-Penetrant Testing-Part 1: General Principles; otwiera się w nowej karcie
  50. EN ISO 3452-1; ISO: Geneva, Switzerland, 2013. otwiera się w nowej karcie
  51. Destructive Tests on Welds in Metallic Materials. Macroscopic and Microscopic Examination of Welds; EN ISO 17639; ISO: Geneva, Switzerland, 2013. otwiera się w nowej karcie
  52. Destructive Tests on Welds in Metallic Materials. Hardness Testing. Hardness Test on Arc Welded Joint; EN ISO 9015-1; ISO: Geneva, Switzerland, 2011. otwiera się w nowej karcie
  53. Tasak, E.; Ziewiec, A.; Zielińska-Lipiec, A.; Ziewiec, K. Problems of pad welding structural steels with martensitic filler material. Adv. Mater. Sci. 2019, 19, 5-14. [CrossRef] otwiera się w nowej karcie
  54. Tomków, J.; Rogalski, G.; Fydrych, D.; Łabanowski, J. Improvement of S355G10+N steel weldability in water environment by temper bead welding. J. Mater. Process. Technol. 2018, 262, 372-381. [CrossRef] otwiera się w nowej karcie
  55. Sun, S.D.; Fabijanic, D.; Barr, C.; Liu, Q.; Walker, K.; Matthews, N.; Orchowski, N.; Easton, M.; Brandt, M. In-situ quench and tempering for microstructure control and enhanced mechanical properties of laser cladded AISI 420 stainless steel powder on 300M steel substrates. Surf. Coat. Technol. 2018, 333, 210-219. [CrossRef] otwiera się w nowej karcie
  56. Jorge, J.C.F.; Monteiro, J.L.D.; de Carvalho Gomes, A.J.; de Souza Bott, I.; de Souza, L.F.G.; Mendes, M.C.; Araújo, L.S. Influence of welding procedure and PWHT on HSLA steel weld metals. J. Mater. Res. Technol. 2018, 8, 561-571. [CrossRef] otwiera się w nowej karcie
  57. Rahman Rashid, R.A.; Abaspour, S.; Palanisamy, S.; Matthews, N.; Dargusch, M.S. Metallurgical and geometrical characterisation of the 316L stainless steel clad deposited on a mild steel substrate. Surf. Coat. Technol. 2017, 327, 174-184. [CrossRef] otwiera się w nowej karcie
  58. Rahman Rashid, R.A.; Nazari, K.A.; Barr, C.; Palanisamy, S.; Orchowski, N.; Matthews, N.; Dargusch, M.S. Effect of laser reheat post-treatment on the microstructural characteristics of laser-cladded ultra-high strength steel. Surf. Coat. Technol. 2019, 372, 93-102. [CrossRef] otwiera się w nowej karcie
  59. Lisiecki, A.;Ślizak, D. Hybrid laser deposition of Fe-based metallic powder under cryogenic conditions. Metals 2020, 10, 190. [CrossRef] otwiera się w nowej karcie
  60. Alipooramirabad, H.; Paradowska, A.; Ghomashchi, R.; Reid, M. Investigating the effects of welding process on residual stresses, microstructure and mechanical properties in HSLA steel welds. J. Manuf. Process. 2017, 28, 70-81. [CrossRef] otwiera się w nowej karcie
  61. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Źródła finansowania:
  • Działalność statusowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 34 razy

Publikacje, które mogą cię zainteresować

Meta Tagi