Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance - Publikacja - MOST Wiedzy

Wyszukiwarka

Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance

Abstrakt

Identification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable metrics that quantify spectral characteristics of the normalized iEEG signal based on power-in-band and synchrony measures. Unsupervised clustering of the metrics identified distinct sets of active electrodes across different subjects. In the total population of 11,869 electrodes, our method achieved 97% sensitivity and 92.9% specificity with the most efficient metric. We validated our results with anatomical localization revealing significantly greater distribution of active electrodes in brain regions that support verbal memory processing. We propose our machine-learning framework for objective and efficient classification and interpretation of electrophysiological signals of brain activities supporting memory and cognition.

Cytowania

  • 1 9

    CrossRef

  • 0

    Web of Science

  • 1 8

    Scopus

Autorzy (13)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 114 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Scientific Reports nr 9, strony 1 - 14,
ISSN: 2045-2322
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Saboo K., Varatharajah Y., Berry B., Kremen V., Sperling M., Davis K., Jobst B., Gross R., Lega B., Sheth S., Worrell G., Iyer R., Kucewicz M. T.: Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance// Scientific Reports -Vol. 9, (2019), s.1-14
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1038/s41598-019-53925-5
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 211 razy

Publikacje, które mogą cię zainteresować

Meta Tagi