Using Convolutional Neural Networks for Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening - Publikacja - MOST Wiedzy

Wyszukiwarka

Using Convolutional Neural Networks for Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening

Abstrakt

Familial hypercholesterolemia (FH) is a highly undiagnosed disease. Among FH patients, the onset of premature coronary artery disease is 13 times higher than in the general population. Early diagnosis and treatment is essential to prevent cardiovascular diseases and their complications, and to prolong life. One of the clinical criteria of FH is the occurrence of a corneal arcus (CA) among patients, especially those under 45 years old. Therefore, by detecting a CA, it might be possible to reduce the number of undiagnosed FH cases. In this paper, we propose using convolutional neural networks (CNN) for automatic recognition of the presence of a corneal arcus. To achieve this goal, we created a dataset of images of irises containing different stages of CA as well as irises without a CA. The core of the dataset consists of images acquired from patients with a corneal arcus, enroled in the National Centre of Familial Hypercholesterolemia in Gdansk. To increase the number of images, the dataset was complemented with images downloaded from the Internet. This dataset created for training and testing the model consisted of nearly 4000 images. To detect a CA in photographic images, we tested neural network models based on the VGG16, ResNet and Inception architectures. Finally, the performance of the models was evaluated on a set of images acquired from volunteers with a custom mobile application. The accuracy of CA detection in a real life scenario was 88% and the F1 score was 86%

Cytowania

  • 2

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Journal of King Saud University-Computer and Information Sciences nr 34, strony 7225 - 7235,
ISSN: 1319-1578
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Kocejko T., Rumiński J., Mazur-Milecka M., Romanowska-Kocejko M., Chlebus K., Kang-Hyun J.: Using Convolutional Neural Networks for Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening// Journal of King Saud University-Computer and Information Sciences -Vol. 34,iss. 9 (2022), s.7225-7235
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.jksuci.2021.09.001
Źródła finansowania:
  • Działalność statutowa/subwencja
Weryfikacja:
Politechnika Gdańska

wyświetlono 142 razy

Publikacje, które mogą cię zainteresować

Meta Tagi