Utilization of a Non-Linear Error Function in a Positioning Algorithm for Distance Measurement Systems Designed for Indoor Environments - Publikacja - MOST Wiedzy


Utilization of a Non-Linear Error Function in a Positioning Algorithm for Distance Measurement Systems Designed for Indoor Environments


A new positioning algorithm for distance measurement systems is outlined herein. This algorithm utilizes a non-linear error function which allows us to improve the positioning accuracy in highly difficult indoor environments. The non-linear error function also allows us to adjust the performance of the algorithm to the particular environmental conditions. The well-known positioning algorithms have limitations, mentioned by their authors, which make them unsuitable for positioning in an indoor environment. In this article, there is a brief discussion about the most popular positioning algorithms with consideration of the indoor environment. The new positioning algorithm is described in detail and a comparative performance analysis of the well-known algorithms and the proposed one is conducted. Those research results are achieved with the utilization of real distance measurement data, collected inside a few different buildings, and they show that the proposed algorithm outperforms the Chan and Foy algorithms in indoor environments. In this article the Automatic Person Localization System (SALOn) is also presented, which was utilized to collect measurement data.


  • 0


  • 0

    Web of Science

  • 0


Informacje szczegółowe

Publikacja w czasopiśmie
artykuły w czasopismach
Opublikowano w:
Journal of Sensor and Actuator Networks nr 8, strony 1 - 15,
Rok wydania:
Opis bibliograficzny:
Czapiewska A.: Utilization of a Non-Linear Error Function in a Positioning Algorithm for Distance Measurement Systems Designed for Indoor Environments// Journal of Sensor and Actuator Networks -Vol. 8,iss. 2 (2019), s.1-15
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/jsan8020021
Bibliografia: test
  1. InLocation. Alliance. Available online: http://inlocationalliance.org/ (accessed on 11 February 2019).
  2. Hawkinson, W.; Samanant, P.; McCroskey, R.; Ingvalson, R.; Kulkarni, A.; Haas, L.; English, B. GLANSER: Geospatial Location, Accountability, and Navigation System for Emergency Responders-System Concept and Performance Assessment. In Proceedings of the IEEE/ION Position Location and Navigation Symposium (PLANS), Myrtle Beach, SC, USA, 23-26 April 2012. [CrossRef] otwiera się w nowej karcie
  3. Katulski, R.; Magiera, J.; Sadowski, J.; Siwicki, W.; Stefański, J.; Studańska, A. Automatic Person Localisation System (SALOn) for special applications. In Proceedings of the V International Scientific Technical Conference: "Marine Technologies for Defence and Security" NATCon, Gdańsk, Poland, 27-29 June 2012.
  4. Harris, M. The Way through the Flames. IEEE Spectr. 2013, 50, 30-35. [CrossRef] otwiera się w nowej karcie
  5. Liu, H.; Li, J.; Xie, Z.; Lin, S.; Whitehouse, K.; Stankovic, J.A.; Siu, D. Automatic and Robust Breadcrumb System Deployment for Indoor Firefighter Applications. In Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, San Francisco, CA, USA, 15-18 June 2010; ISBN 978-1-60558-985-5. otwiera się w nowej karcie
  6. Sholz, M.; Riedel, T.; Decker, C. A Flexible Architecture for a Robust Indoor Navigation Support Device for Firefighters. In Proceedings of the Seventh International Conference on Networked Sensing Systems (INSS), Kassel, Germany, 15-18 June 2010. otwiera się w nowej karcie
  7. Guardly. Available online: www.guardly.com (accessed on 1 September 2017). otwiera się w nowej karcie
  8. Stefański, J. Low Cost Method for Location Service in the WCDMA System. Nonlinear Anal.-Real World Appl. 2013, 14, 626-634. [CrossRef] otwiera się w nowej karcie
  9. Kołakowski, J.; Berezowska, M.; Michnowski, R.; Radecki, K.; Malicki, L. Wireless system for elderly persons mobility and behaviour investigation. In Proceedings of the 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Warsaw, Poland, 24-26 September 2015; ISBN 978-1-4673-8361-5. otwiera się w nowej karcie
  10. Smartmuseum. Available online: www.smartmuseum.eu (accessed on 11 February 2019).
  11. Mobile Location Intelligence|Skyhook. Available online: http://www.skyhookwireless.com/products/context- accelerator (accessed on 11 February 2019). otwiera się w nowej karcie
  12. Walkbase|Personalising In-Store Shopping. Available online: www.walkbase.com (accessed on 11 February 2019). otwiera się w nowej karcie
  13. Arrue, N.; Losada, M.; Zamora-Cadensas, L.; Jimenez-Irastorza, A.; Velez, I. Design of an IR-UWB Indoor Localization System Based on a Novel RTT Ranging Estimator. In Proceedings of the 2010 First International Conference on Sensor Device Technologies and Applications (SENSORDEVICES), Venice, Italy, 18-25 July 2010; ISBN 978-1-4244-7474-5. otwiera się w nowej karcie
  14. Chan, Y.T.; Ho, K.C. A Simple and Efficient Estimator for Hiperbolic Location. IEEE Trans. Signal Process. 1994, 42, 1905-1915. [CrossRef] otwiera się w nowej karcie
  15. Schroeer, C. A Real-Time UWB Multi-Channel Indoor Positioning System for Industrial Scenarios. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24-27 September 2018. [CrossRef] otwiera się w nowej karcie
  16. Jiang, H.; Zhang, Y.; Cui, H.; Liu, C. Fast three-dimensional node localization in UWB wireless sensor network using propagator method digest of technical papers. In Proceedings of the 2013 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 11-14 January 2013. [CrossRef] otwiera się w nowej karcie
  17. Foy, W. Position-Location Solutions by Taylor-Series Estimation. IEEE Trans. Aerosp. Electron. Syst. 1976, AES-12, 187-194. [CrossRef] otwiera się w nowej karcie
  18. Qi, Y.; Soh, C.B.; Gunawan, E.; Low, K.S.; Maskooki, A. An Accurate 3D UWB Hyperbolic Localization in Indoor Multipath Environment Using Iterative Taylor-Series Estimation. In Proceedings of the 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2-5 June 2013. [CrossRef] otwiera się w nowej karcie
  19. Yu, L.; Zhang, X.; Wei, S.; Xiong, Z. Hierarchical and iterative multi-target positioning via imaging strategy. In Proceedings of the 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 10-13 October 2016. [CrossRef] otwiera się w nowej karcie
  20. Czapiewska, A. New Indoor Positioning Algorithm for Distance Measurements. In Proceedings of the International Conference on Telecommunications and Signal Processing, Barcelona, Spain, 5-7 July 2017; otwiera się w nowej karcie
  21. ISBN 978-1-5090-3981-4. [CrossRef] otwiera się w nowej karcie
  22. Yu, K.; Sharp, I.; Guo, Y.J. Ground-Based Wireless Positioning; otwiera się w nowej karcie
  23. Saeed, A.; Naseem, S.F.; Zaidi, Z.R. Mobility estimation for wireless networks using round trip time (RTT). In Proceedings of the 2007 6th International Conference on Information, Communications & Signal Processing, Singapore, 10-13 December 2007. otwiera się w nowej karcie
  24. Kwak, M.; Chong, J. A New Double Two-Way Ranging Algorithm for Ranging System. In Proceedings of the 2nd IEEE International Conference on Network Infrastructure and Digital Content, Beijing, China, 24-26 September 2010. otwiera się w nowej karcie
  25. IEEE Computer Society: IEEE Std 802.15.4a-2007, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs); IEEE: New York, NY, USA, 2007. otwiera się w nowej karcie
  26. Kim, H. Double-Sided Two-Way Ranging Algorithm to Reduce Ranging Time. IEEE Commun. Lett. 2009, 13, 486-488. [CrossRef] otwiera się w nowej karcie
  27. Czapiewska, A.; Sadowski, J. Comparison of new position estimation algorithm for indoor environment. In Proceedings of the VIth International Conference NATCON, Gdansk, Poland, 24-26 June 2014. otwiera się w nowej karcie
  28. Miyano, Y.; Namerikawa, T. Load leveling control by Real-Time Dynamical pricing based on Steepest Descent Method. In Proceedings of the 2012 Proceedings of SICE Annual Conference (SICE), Akita, Japan, 20-23 August 2012; ISBN 978-1-4673-2259-1.
  29. Zhang, N.; Wu, W.; Zheng, G. Convergence of gradient method with momentum for two-Layer feedforward neural networks. IEEE Trans. Neural Netw. 2006, 17, 522-525. [CrossRef] [PubMed] otwiera się w nowej karcie
  30. Official Journal of the European Union. 2009/343/EC: Commission Decision of 21 April 2009 Amending Decision 2007/131/EC on Allowing the Use of the Radio Spectrum for Equipment Using Ultra-Wideband Technology in a Harmonised Manner in the Community. Available online: https://eur-lex.europa.eu/eli/dec/ 2009/343(1)/oj (accessed on 15 March 2019). otwiera się w nowej karcie
  31. © 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 21 razy

Publikacje, które mogą cię zainteresować

Meta Tagi