Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks - Publikacja - MOST Wiedzy

Wyszukiwarka

Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks

Abstrakt

The presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods. Each of the proposed feature descriptors outputs a feature activation map in the form of a grayscale image. Acquired feature maps can be appended in a straightforward way to the original color channels of the input image and passed to the input of a convolutional neural network during the training and inference steps. An experimental evaluation is conducted to compare the classification ROC AUC of feature-extended convolutional neural network models with baseline models using regular color image inputs. The advantage of feature-extended models is demonstrated for the Resnet and VGG convolutional neural network architectures.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
SENSORS nr 23,
ISSN: 1424-8220
Język:
angielski
Rok wydania:
2023
Opis bibliograficzny:
Brzeski A., Dziubich T., Krawczyk H.: Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks// SENSORS -Vol. 23,iss. 24 (2023), s.9717-9739
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s23249717
Źródła finansowania:
  • Działalność statutowa/subwencja
Weryfikacja:
Politechnika Gdańska

wyświetlono 79 razy

Publikacje, które mogą cię zainteresować

Meta Tagi