Wyniki wyszukiwania dla: neural network architecture search - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: neural network architecture search
Przykład wyników znalezionych w innych katalogach

Wyniki wyszukiwania dla: neural network architecture search

  • Deep neural network architecture search using network morphism

    The paper presents the results of the research on neural architecture search (NAS) algorithm. We utilized the hill climbing algorithm to search for well-performing structures of deep convolutional neural network. Moreover, we used the function preserving transformations which enabled the effective operation of the algorithm in a short period of time. The network obtained with the advantage of NAS was validated on skin lesion classification...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Neural Architecture Search for Skin Lesion Classification

    Deep neural networks have achieved great success in many domains. However, successful deployment of such systems is determined by proper manual selection of the neural architecture. This is a tedious and time-consuming process that requires expert knowledge. Different tasks need very different architectures to obtain satisfactory results. The group of methods called the neural architecture search (NAS) helps to find effective architecture...

    Pełny tekst do pobrania w portalu

  • The impact of the AC922 Architecture on Performance of Deep Neural Network Training

    Publikacja

    - Rok 2020

    Practical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes

    A problem related to the development of algorithms designed to find the structure of artificial neural network used for behavioural (black-box) modelling of selected dynamic processes has been addressed in this paper. The research has included four original proposals of algorithms dedicated to neural network architecture search. Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and...

    Pełny tekst do pobrania w portalu

  • Neural network based control system architecture proposal for underwatership hull cleaning robot.

    Publikacja

    - Rok 2003

    Przedstawiono model matematyczny podwodnej głowicy roboczej, oraz określono metodę jej pozycjonowania i orientacji w lokalnym środowisku. Zaproponowano architekturę układu sterowania, opartego na bazie sieci neuronowych, za pomocą którego można sterować podwodnym robotem, przeznaczonym do czyszczenia burt statku.

  • Neural Network Subgraphs Correlation with Trained Model Accuracy

    Publikacja

    - Rok 2020

    Neural Architecture Search (NAS) is a computationally demanding process of finding optimal neural network architecture for a given task. Conceptually, NAS comprises applying a search strategy on a predefined search space accompanied by a performance evaluation method. The design of search space alone is expected to substantially impact NAS efficiency. We consider neural networks as graphs and find a correlation between the presence...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition

    Publikacja

    - Gazi University Journal of Science - Rok 2022

    Predictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Deep Video Multi-task Learning Towards Generalized Visual Scene Enhancement and Understanding

    Publikacja

    - Rok 2024

    The goal of this thesis was to develop efficient video multi-task convolutional architectures for a range of diverse vision tasks, on RGB scenes, leveraging i) task relationships and ii) motion information to improve multi-task performance. The approach we take starts from the integration of diverse tasks within video multi-task learning networks. We present the first two datasets of their kind in the existing literature, featuring...

    Pełny tekst do pobrania w portalu

  • Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks

    In this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....

    Pełny tekst do pobrania w portalu

  • Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia

    Publikacja

    - Rok 2024

    W pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...

    Pełny tekst do pobrania w portalu