Wyniki wyszukiwania dla: semantic segmentation - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: semantic segmentation

Filtry

wszystkich: 8

wyczyść wszystkie filtry


Filtry wybranego katalogu

  • Kategoria

  • Rok

  • Opcje

wyczyść Filtry wybranego katalogu niedostępne

Wyniki wyszukiwania dla: semantic segmentation

  • Urban scene semantic segmentation using the U-Net model

    Publikacja

    - Rok 2023

    Vision-based semantic segmentation of complex urban street scenes is a very important function during autonomous driving (AD), which will become an important technology in industrialized countries in the near future. Today, advanced driver assistance systems (ADAS) improve traffic safety thanks to the application of solutions that enable detecting objects, recognising road signs, segmenting the road, etc. The basis for these functionalities...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Semantic segmentation training using imperfect annotations and loss masking

    One of the most significant factors affecting supervised neural network training is the precision of the annotations. Also, in a case of expert group, the problem of inconsistent data annotations is an integral part of real-world supervised learning processes, well-known to researchers. One practical example is a weak ground truth delineation for medical image segmentation. In this paper, we have developed a new method of accurate...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Closer Look at the Uncertainty Estimation in Semantic Segmentation under Distributional Shift

    While recent computer vision algorithms achieve impressive performance on many benchmarks, they lack robustness - presented with an image from a different distribution, (e.g. weather or lighting conditions not considered during training), they may produce an erroneous prediction. Therefore, it is desired that such a model will be able to reliably predict its confidence measure. In this work, uncertainty estimation for the task...

    Pełny tekst do pobrania w portalu

  • Medical Image Segmentation Using Deep Semantic-based Methods: A Review of Techniques, Applications and Emerging Trends

    Publikacja

    - Information Fusion - Rok 2022

    Semantic-based segmentation (Semseg) methods play an essential part in medical imaging analysis to improve the diagnostic process. In Semseg technique, every pixel of an image is classified into an instance, where each class is corresponded by an instance. In particular, the semantic segmentation can be used by many medical experts in the domain of radiology, ophthalmologists, dermatologist, and image-guided radiotherapy. The authors...

    Pełny tekst do pobrania w portalu

  • Application Of Generative Adversarial Network for Data Augmentation and Multiplication to Automated Cell Segmentation of the Corneal Endothelium

    Publikacja

    - Rok 2024

    Considering the automatic segmentation of the endothelial layer, the available data of the corneal endothelium is still limited to a few datasets, typically containing an average of only about 30 images. To fill this gap, this paper introduces the use of Generative Adversarial Networks (GANs) to augment and multiply data. By using the ``Alizarine'' dataset, we train a model to generate a new synthetic dataset with over 513k images....

    Pełny tekst do pobrania w portalu

  • Abdominal Aortic Aneurysm segmentation from contrast-enhanced computed tomography angiography using deep convolutional networks

    Publikacja
    • T. Dziubich
    • P. Białas
    • Ł. Znaniecki
    • J. Halman
    • J. Brzeziński

    - Rok 2020

    One of the most common imaging methods for diagnosing an abdominal aortic aneurysm, and an endoleak detection is computed tomography angiography. In this paper, we address the problem of aorta and thrombus semantic segmentation, what is a mandatory step to estimate aortic aneurysm diameter. Three end-to-end convolutional neural networks were trained and evaluated. Finally, we proposed an ensemble of deep neural networks with underlying...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Robust Object Detection with Multi-input Multi-output Faster R-CNN

    Publikacja

    Recent years have seen impressive progress in visual recognition on many benchmarks, however, generalization to the out-of-distribution setting remains a significant challenge. A state-of-the-art method for robust visual recognition is model ensembling. However, recently it was shown that similarly competitive results could be achieved with a much smaller cost, by using multi-input multi-output architecture (MIMO). In this work,...

    Pełny tekst do pobrania w portalu

  • Robust Object Detection with Multi-input Multi-output Faster R-CNN

    Publikacja

    Recent years have seen impressive progress in visual recognition on many benchmarks, however, generalization to the out-of-distribution setting remains a significant challenge. A state-of-the-art method for robust visual recognition is model ensembling. However, recently it was shown that similarly competitive results could be achieved with a much smaller cost, by using multi-input multi-output architecture (MIMO). In this work,...

    Pełny tekst do pobrania w serwisie zewnętrznym