Wyniki wyszukiwania dla: NEURAL NETWORKS - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: NEURAL NETWORKS

Wyniki wyszukiwania dla: NEURAL NETWORKS

  • Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling

    Publikacja

    - Rok 2021

    Global sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Simulating Power Generation from Photovoltaics in the Polish Power System Based on Ground Meteorological Measurements—First Tests Based on Transmission System Operator Data

    Publikacja

    - ENERGIES - Rok 2020

    The Polish power system is undergoing a slow process of transformation from coal to one that is renewables dominated. Although coal will remain a fundamental fuel in the coming years, the recent upsurge in installed capacity of photovoltaic (PV) systems should draw significant attention. Owning to the fact that the Polish Transmission System Operator recently published the PV hourly generation time series in this article, we aim...

    Pełny tekst do pobrania w portalu

  • WYKORZYSTANIE SIECI NEURONOWYCH DO SYNTEZY MOWY WYRAŻAJĄCEJ EMOCJE

    Publikacja

    W niniejszym artykule przedstawiono analizę rozwiązań do rozpoznawania emocji opartych na mowie i możliwości ich wykorzystania w syntezie mowy z emocjami, wykorzystując do tego celu sieci neuronowe. Przedstawiono aktualne rozwiązania dotyczące rozpoznawania emocji w mowie i metod syntezy mowy za pomocą sieci neuronowych. Obecnie obserwuje się znaczny wzrost zainteresowania i wykorzystania uczenia głębokiego w aplikacjach związanych...

  • Comparison of Deep Learning Approaches in Classification of Glacial Landforms

    Publikacja

    - International Journal of Electronics and Telecommunications - Rok 2024

    Glacial landforms, created by the continuous movements of glaciers over millennia, are crucial topics in geomorphological research. Their systematic analysis affords invaluable insights into past climatic oscillations and augments understanding of long-term climate change dynamics. The classification of these types of terrain traditionally depends on labor-intensive manual or semi-automated methods. However, the emergence of automated...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Deep Video Multi-task Learning Towards Generalized Visual Scene Enhancement and Understanding

    Publikacja

    - Rok 2024

    The goal of this thesis was to develop efficient video multi-task convolutional architectures for a range of diverse vision tasks, on RGB scenes, leveraging i) task relationships and ii) motion information to improve multi-task performance. The approach we take starts from the integration of diverse tasks within video multi-task learning networks. We present the first two datasets of their kind in the existing literature, featuring...

    Pełny tekst do pobrania w portalu

  • THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN

    Publikacja

    - Rok 2021

    In the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...

  • Closed-loop stimulation of temporal cortex rescues functional networks and improves memory

    Publikacja
    • Y. Ezzyat
    • P. A. Wanda
    • D. F. Levy
    • A. Kadel
    • A. Aka
    • I. Pedisich
    • M. R. Sperling
    • A. Sharan
    • B. C. Lega
    • A. Burks... i 12 innych

    - Nature Communications - Rok 2018

    Memory failures are frustrating and often the result of ineffective encoding. One approach to improving memory outcomes is through direct modulation of brain activity with electrical stimulation. Previous efforts, however, have reported inconsistent effects when using open-loop stimulation and often target the hippocampus and medial temporal lobes. Here we use a closed-loop system to monitor and decode neural activity from direct...

    Pełny tekst do pobrania w portalu

  • Signal Processing in the Investigation of Two-phase Liquid-gas Flow by Gamma-ray Absorption

    Publikacja

    - Rok 2019

    n this paper, the use of the gamma-absorption method applied in the investigation of the two-phase liquid-gas flow in the pipeline is described. An example of its application to the air transported by water in a horizontal pipeline is evaluated. In the measurements, Am-241 radioactive sources and probes with Nal (Tl) scintillation crystals have been used. The signals from the radiometric set were used to determine the velocity...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Evaluating Performance and Accuracy Improvements for Attention-OCR

    In this paper we evaluated a set of potential improvements to the successful Attention-OCR architecture, designed to predict multiline text from unconstrained scenes in real-world images. We investigated the impact of several optimizations on model’s accuracy, including employing dynamic RNNs (Recurrent Neural Networks), scheduled sampling, BiLSTM (Bidirectional Long Short-Term Memory) and a modified attention model. BiLSTM was...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Collaborative Data Acquisition and Learning Support

    With the constant development of neural networks, traditional algorithms relying on data structures lose their significance as more and more solutions are using AI rather than traditional algorithms. This in turn requires a lot of correctly annotated and informative data samples. In this paper, we propose a crowdsourcing based approach for data acquisition and tagging with support for Active Learning where the system acts as an...

    Pełny tekst do pobrania w portalu

  • Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks

    Publikacja

    - CMC-Computers Materials & Continua - Rok 2020

    The increasing use of the Internet with vehicles has made travel more convenient. However, hackers can attack intelligent vehicles through various technical loopholes, resulting in a range of security issues. Due to these security issues, the safety protection technology of the in-vehicle system has become a focus of research. Using the advanced autoencoder network and recurrent neural network in deep learning, we investigated...

    Pełny tekst do pobrania w portalu

  • Application of gas chromatographic data and 2D molecular descriptors for accurate global mobility potential prediction

    Publikacja

    - ENVIRONMENTAL POLLUTION - Rok 2023

    Mobility is a key feature affecting the environmental fate, which is of particular importance in the case of persistent organic pollutants (POPs) and emerging pollutants (EPs). In this study, the global mobility classification artificial neural networks-based models employing GC retention times (RT) and 2D molecular descriptors were constructed and validated. The high usability of RT was confirmed based on the feature selection...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality

    Publikacja
    • W. Nazar
    • K. Nazar
    • L. Daniłowicz-Szymanowicz

    - Life - Rok 2024

    High-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Study of Statistical Text Representation Methods for Performance Improvement of a Hierarchical Attention Network

    To effectively process textual data, many approaches have been proposed to create text representations. The transformation of a text into a form of numbers that can be computed using computers is crucial for further applications in downstream tasks such as document classification, document summarization, and so forth. In our work, we study the quality of text representations using statistical methods and compare them to approaches...

    Pełny tekst do pobrania w portalu

  • Musical Instrument Identification Using Deep Learning Approach

    Publikacja

    The work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...

    Pełny tekst do pobrania w portalu

  • SegSperm - a dataset of sperm images for blurry and small object segmentation

    Dane Badawcze

    Many deep learning applications require figure-ground segmentation. The performance of segmentation models varies across modalities and acquisition settings.

  • Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych

    W artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wykorzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...

    Pełny tekst do pobrania w portalu

  • Special techniques and future perspectives: Simultaneous macro- and micro-electrode recordings

    Publikacja

    - Rok 2019

    There are many approaches to studying the inner workings of the brain and its highly interconnected circuits. One can look at the global activity in different brain structures using non-invasive technologies like positron emission tomography (PET) or functional magnetic resonance imaging (fMRI), which measure physiological changes, e.g. in the glucose uptake or blood flow. These can be very effectively used to localize active patches...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Efficiency comparison of selected endoscopic video analysis algorithms

    In the paper, selected image analysis algorithms were examined and compared in the task of identifying informative frames, blurry frames, colorectal cancer and healthy tissue on endoscopic videos. In order to standardize the tests, the algorithms were modified by removing from them parts responsible for the classification, and replacing them with Support Vector Machines and Artificial Neural Networks. The tests were performed in...

    Pełny tekst do pobrania w portalu

  • Artificial intelligence support for disease detection in wireless capsule endoscopy images of human large bowel

    Publikacja

    - Rok 2011

    In the work the chosen algorithms of disease recognition in endoscopy images were described and compared for theirs efficiency. The algorithms were estimated with regard to utility for application in computer system's support for digestive system's diagnostics. Estimations were achieved in an advanced testing environment, which was built with use of the large collection of endoscopy movies received from Medical University in Gdańsk....

  • Collective citizens' behavior modelling with support of the Internet of Things and Big Data

    In this paper, collective human behaviors are modelled by a development of Big Data mining related to the Internet of Things. Some studies under MapReduce architectures have been carried out to improve an efficiency of Big Data mining. Intelligent agents in data mining have been analyzed for smart city systems, as well as data mining has been described by genetic programming. Furthermore, artificial neural networks have been discussed...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Sztuczne sieci neuronowe oraz metoda wektorów wspierających w bankowych systemach informatycznych

    W artykule zaprezentowano wybrane metod sztucznej inteligencji do zwiększania efektywności bankowych systemów informatycznych. Wykorzystanie metody wektorów wspierających czy sztucznych sieci neuronowych w połączeniu z nowoczesną technologią mikroprocesorową umożliwia znaczący wzrost konkurencyjności banku poprzez dodanie nowych funkcjonalności. W rezultacie możliwe jest także złagodzenie skutków kryzysu finansowego.

    Pełny tekst do pobrania w portalu

  • An Analysis of the Performance of Lightweight CNNs in the Context of Object Detection on Mobile Phones

    Convolutional Neural Networks (CNNs) are widely used in computer vision, which is now increasingly used in mobile phones. The problem is that smartphones do not have much processing power. Initially, CNNs focused solely on increasing accuracy. High-end computing devices are most often used in this type of research. The most popular application of lightweight CNN object detection is real-time image processing, which can be found...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Shape Optimisation of Kaplan Turbine Blades Using Genetic Algorithms

    Publikacja

    - Rok 2017

    This monograph is a comprehensive guide to a method of blade profile optimisation for Kaplan-type turbines. This method is based on modelling the interaction between rotor and stator blades. Additionally, the shape of the draft tube is investigated. The influence of the periodic boundary condition vs. full geometry is also discussed. Evolutionary algorithms (EA) are used as an optimisation method together with artificial neural...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • ANN for human pose estimation in low resolution depth images

    Publikacja

    - Rok 2017

    The paper presents an approach to localize human body joints in 3D coordinates based on a single low resolution depth image. First a framework to generate a database of 80k realistic depth images from a 3D body model is described. Then data preprocessing and normalization procedure, and DNN and MLP artificial neural networks architectures and training are presented. The robustness against camera distance and image noise is analysed....

    Pełny tekst do pobrania w portalu

  • Comparison of selected electroencephalographic signal classification methods

    A variety of methods exists for electroencephalographic (EEG) signals classification. In this paper, we briefly review selected methods developed for such a purpose. First, a short description of the EEG signal characteristics is shown. Then, a comparison between the selected EEG signal classification methods, based on the overview of research studies on this topic, is presented. Examples of methods included in the study are: Artificial...

  • Chemometrics for Selection, Prediction, and Classification of Sustainable Solutions for Green Chemistry—A Review

    In this review, we present the applications of chemometric techniques for green and sustainable chemistry. The techniques, such as cluster analysis, principal component analysis, artificial neural networks, and multivariate ranking techniques, are applied for dealing with missing data, grouping or classification purposes, selection of green material, or processes. The areas of application are mainly finding sustainable solutions...

    Pełny tekst do pobrania w portalu

  • Using deep learning to increase accuracy of gaze controlled prosthetic arm

    Publikacja

    - Rok 2021

    This paper presents how neural networks can be utilized to improve the accuracy of reach and grab functionality of hybrid prosthetic arm with eye tracing interface. The LSTM based Autoencoder was introduced to overcome the problem of lack of accuracy of the gaze tracking modality in this hybrid interface. The gaze based interaction strongly depends on the eye tracking hardware. In this paper it was presented how the overall the...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Deep learning approach on surface EEG based Brain Computer Interface

    Publikacja

    - Rok 2022

    In this work we analysed the application of con-volutional neural networks in motor imagery classification for the Brain Computer Interface (BCI) purposes. To increase the accuracy of classification we proposed the solution that combines the Common Spatial Pattern (CSP) with convolutional network (ConvNet). The electroencephalography (EEG) is one of the modalities we try to use for controlling the prosthetic arm. Therefor in this...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Wykorzystanie sztucznych sieci neuronowych do szacowania wpływu drgań na budynki jednorodzinne

    W artykule przedstawiono metodę prognozowania wpływu drgań na budynki mieszkalne z wykorzystaniem sztucznych sieci neuronowych. Drgania komunikacyjne mogą doprowadzić do uszkodzenia elementów konstrukcyjnych, a nawet do awarii budynku. Najczęstszym efektem są jednak rysy, pękanie tynku i wypraw. Metody oparte na sztucznej inteligencji są przybliżone, ale stanowią wystarczająco dokładną i ekonomiczną alternatywę dla tradycyjnych...

    Pełny tekst do pobrania w portalu

  • Mathematical modeling and prediction of pit to crack transition under cyclic thermal load using artificial neural network

    Publikacja

    - Rok 2023

    The formation of pitting is a major problem in most metals, which is caused by extremely localized corrosion that creates small holes in metal and subsequently, it changes into cracks under mechanical load, thermo-mechanical stress, and corrosion process factors. This research aims to study pit to crack transition phenomenon of steel boiler heat tubes under cyclic thermal load, and mathematical modeling...

  • Surface EMG-based signal acquisition for decoding hand movements

    Dane Badawcze
    open access

    Biosignal processing plays a crucial role in modern hand prosthetics. The challenge is to restore functionality of a lost limb based on the signals acquired from the surface of the stump. The number of sensors (emg channels) used for signal acquisition influence the quality of a prosthetic hand. Modern algorithms (including neural networks) can significantly...

  • How to Sort Them? A Network for LEGO Bricks Classification

    Publikacja

    LEGO bricks are highly popular due to the ability to build almost any type of creation. This is possible thanks to availability of multiple shapes and colors of the bricks. For the smooth build process the bricks need to properly sorted and arranged. In our work we aim at creating an automated LEGO bricks sorter. With over 3700 different LEGO parts bricks classification has to be done with deep neural networks. The question arises...

    Pełny tekst do pobrania w portalu

  • Metody sztucznej inteligencji do wspomagania bankowych systemów informatycznych

    W pracy opisano zastosowania nowoczesnych metod sztucznej inteligencji do wspomagania bankowych systemów informatycznych. Wykorzystanie w systemach informatycznych algorytmów ewolucyjnych, harmonicznych, czy sztucznych sieci neuronowych w połączeniu z nowoczesną technologią mikroprocesorową umożliwiają zasadniczy wzrost konkurencyjności banku. Dlatego w pracy omówiono wybrane zastosowania bankowe ze szczególnym uwzględnieniem zbliżeniowych...

  • Examining Classifiers Applied to Static Hand Gesture Recognition in Novel Sound Mixing System

    The main objective of the chapter is to present the methodology and results of examining various classifiers (Nearest Neighbor-like algorithm with non-nested generalization (NNge), Naive Bayes, C4.5 (J48), Random Tree, Random Forests, Artificial Neural Networks (Multilayer Perceptron), Support Vector Machine (SVM) used for static gesture recognition. A problem of effective gesture recognition is outlined in the context of the system...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Music Mood Visualization Using Self-Organizing Maps

    Due to an increasing amount of music being made available in digital form in the Internet, an automatic organization of music is sought. The paper presents an approach to graphical representation of mood of songs based on Self-Organizing Maps. Parameters describing mood of music are proposed and calculated and then analyzed employing correlation with mood dimensions based on the Multidimensional Scaling. A map is created in which...

    Pełny tekst do pobrania w portalu

  • Adaptacyjny algorytm filtracji sygnału fonokardiograficznego wykorzystujący sztuczną sieć neuronową

    Podstawowym problemem podczas projektowania systemu autodiagnostyki chorób serca, bazującego na analizie sygnału fonokardiograficznego (PCG), jest konieczność zapewnienia, niezależnie od warunków zewnętrznych, sygnału o wysokiej jakości. W artykule, bazując na zdolności Sztucznej Sieci Neuronowej (SSN) do predykcji sygnałów periodycznych oraz quasi-periodycznych, został opracowany adaptacyjny algorytm filtracji dźwięków serca....

    Pełny tekst do pobrania w portalu

  • Deep learning in the fog

    In the era of a ubiquitous Internet of Things and fast artificial intelligence advance, especially thanks to deep learning networks and hardware acceleration, we face rapid growth of highly decentralized and intelligent solutions that offer functionality of data processing closer to the end user. Internet of Things usually produces a huge amount of data that to be effectively analyzed, especially with neural networks, demands high...

    Pełny tekst do pobrania w portalu

  • Position Estimation in Mixed Indoor-Outdoor Environment Using Signals of Opportunity and Deep Learning Approach

    To improve the user's localization estimation in indoor and outdoor environment a novel radiolocalization system using deep learning dedicated to work both in indoor and outdoor environment is proposed. It is based on the radio signatures using radio signals of opportunity from LTE an WiFi networks. The measurements of channel state estimators from LTE network and from WiFi network are taken by using the developed application....

    Pełny tekst do pobrania w portalu

  • Improvement of speech intelligibility in the presence of noise interference using the Lombard effect and an automatic noise interference profiling based on deep learning

    Publikacja
    • K. Kąkol

    - Rok 2023

    The Lombard effect is a phenomenon that results in speech intelligibility improvement when applied to noise. There are many distinctive features of Lombard speech that were recalled in this dissertation. This work proposes the creation of a system capable of improving speech quality and intelligibility in real-time measured by objective metrics and subjective tests. This system consists of three main components: speech type detection,...

    Pełny tekst do pobrania w portalu

  • Zastosowanie sieci neuronowych do detekcji impulsów o znanym kształcie w obecności silnego szumu i trendu

    Detekcja impulsów w odebranym sygnale radiowym, zwłaszcza w obecności silnego szumu oraz trendu, jest trudnym zadaniem. Artykuł przedstawia propozycje rozwiązań wykorzystujących sieci neuronowe do detekcji impulsów o znanym kształcie w obecności silnego szumu i trendu. Na potrzeby realizacji tego zadania zaproponowano dwie architektury. W pracy przedstawiono wyniki badań wpływu kształtu impulsu, mocy zakłóceń szumowych oraz trendu...

    Pełny tekst do pobrania w portalu

  • Residual MobileNets

    As modern convolutional neural networks become increasingly deeper, they also become slower and require high computational resources beyond the capabilities of many mobile and embedded platforms. To address this challenge, much of the recent research has focused on reducing the model size and computational complexity. In this paper, we propose a novel residual depth-separable convolution block, which is an improvement of the basic...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Interpretable Deep Learning Model for the Detection and Reconstruction of Dysarthric Speech

    Publikacja
    • D. Korzekwa
    • R. Barra-Chicote
    • B. Kostek
    • T. Drugman
    • M. Łajszczak

    - Rok 2019

    We present a novel deep learning model for the detection and reconstruction of dysarthric speech. We train the model with a multi-task learning technique to jointly solve dysarthria detection and speech reconstruction tasks. The model key feature is a low-dimensional latent space that is meant to encode the properties of dysarthric speech. It is commonly believed that neural networks are black boxes that solve problems but do not...

    Pełny tekst do pobrania w portalu

  • Fragmentation of Hydrographic Big Data Into Subsets During Reduction Process

    Publikacja

    - Rok 2017

    The article presented problems of fragmentation of hydrographic big data into smaller subsets during reduction process. Data reduction is a processing of reduce the value of the data set, in order to make them easier and more effective for the goals of the analysis. The main aim of authors is to create new reduction method. The article presented the first stage of this method – fragmentation of bathymetric data into subsets. It...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Urban scene semantic segmentation using the U-Net model

    Publikacja

    - Rok 2023

    Vision-based semantic segmentation of complex urban street scenes is a very important function during autonomous driving (AD), which will become an important technology in industrialized countries in the near future. Today, advanced driver assistance systems (ADAS) improve traffic safety thanks to the application of solutions that enable detecting objects, recognising road signs, segmenting the road, etc. The basis for these functionalities...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Fault detection in measuring systems of power plants

    Publikacja

    This paper describes possibility of forming diagnostic relations based on application of the artifical neural networks (ANNs), intended for the identifying of degradation of measuring instruments used in developed power systems. As an example a steam turbine high-power plant was used. And, simulative calculations were applied to forming diagnostic neural relations. Both degradation of the measuring instruments and simultaneously...

    Pełny tekst do pobrania w portalu

  • AUTOMATYCZNA KLASYFIKACJA MOWY PATOLOGICZNEJ

    Publikacja

    Aplikacja przedstawiona w niniejszym rozdziale służy do automatycznego wykrywania mowy patologicznej na podstawie bazy nagrań. W pierwszej kolejności przedstawiono założenia leżące u podstaw przeprowadzonych badan wraz z wyborem bazy mowy patologicznej. Zaprezentowano również zastosowane algorytmy oraz cechy sygnału mowy, które pozwalają odróżnić mowę niezaburzoną od mowy patologicznej. Wytrenowane sieci neuronowe zostały następnie...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Explainable machine learning for diffraction patterns

    Publikacja
    • S. Nawaz
    • V. Rahmani
    • D. Pennicard
    • S. P. R. Setty
    • B. Klaudel
    • H. Graafsma

    - Journal of Applied Crystallography - Rok 2023

    Serial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...

    Pełny tekst do pobrania w portalu

  • Rotor Blade Geometry Optimisation in Kaplan Turbine

    Publikacja

    The paper presents the description of method and results of rotor blade shape optimisation. The rotor blading constitutes a part ofturbine flow path. Optimisation consists in selection of the shape that minimises ratio of polytrophic loss. Shape of the blade isdefined by the mean camber line and thickness of the airfoil. Thickness is distributed around the camber line based on the ratio ofdistribution. Global optimisation was done...

    Pełny tekst do pobrania w portalu

  • Comparing the Effectiveness of ANNs and SVMs in Forecasting the Impact of Traffic-Induced Vibrations on Building

    Traffic - induced vibrations may cause damage to structural elements and may even lead to structural collapse. The aim of the article is to compare the effectiveness of algorithms in forecasting the impact of vibrations on buildings using the Machine Learning (ML) methods. The paper presents two alternative approaches by using Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). Factors that may affect traffic-induced...

    Pełny tekst do pobrania w serwisie zewnętrznym