Filtry
wszystkich: 653
-
Katalog
Wyniki wyszukiwania dla: deep-learning, neural networks
-
Forecasting of currency exchange rates using artificial neural networks
PublikacjaW rozdziale tym autor przedstawił wyniki swoich badań nad wykorzystaniem sztucznych sieci neuronowych do prognozowania kursu walut (na przykładzie pary walutowej PLN-USD).Głównym celem badań było porównanie skuteczności przewidywania kursu złotówki w latach 1997 - 2005 przy pomocy różnych rodzajów sieci neuronowych.
-
Application of Artificial Neural Networks in Investigations of Steam Turbine Cascades
PublikacjaZaprezentowano wyniki badań numerycznych zastosowania sieci neuronowych przy obliczeniach przepływów w palisadach turbin parowych. Na podstawie uzyskanych wyników wykazano, że sieci neuronowe mogą być używane do szacowania przestrzennego rozkładu parametrów przepływu, takich jak entalpia, entropia, ciśnienie czy prędkość czynnika w kanale przepływowym. Omówiono również zastosowania tego typu metod przy projektowaniu palisad, stopni...
-
Automatic singing quality recognition employing artificial neural networks
PublikacjaCelem artykułu jest udowodnienie możliwości automatycznej oceny jakości technicznej głosów śpiewaczych. Pokrótce zaprezentowano w nim stworzoną bazę danych głosów śpiewaczych oraz zaimplementowane parametry. Przy pomocy sztucznych sieci neuronowych zaprojektowano system decyzyjny, który oceniono w pięciostopniowej skali jakość techniczną głosu. Przy pomocy metod statystycznych udowodniono, że wyniki generowane przez ten system...
-
Neural networks based NARX models in nonlinear adaptive control
Publikacja -
Automatic Breath Analysis System Using Convolutional Neural Networks
PublikacjaDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is not uncommon for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected...
-
Automatic Breath Analysis System Using Convolutional Neural Networks
PublikacjaDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is common for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected as...
-
Estimation the rhythmic salience of sound with association rules and neural networks
PublikacjaW referacie przedstawiono eksperymenty mające na celu automatyczne wyszukiwanie wartości rytmicznych we frazie muzycznej. W tym celu wykorzystano metody data mining i sztuczne sieci neuronowe.
-
Prediction of antimicrobial activity of imidazole derivatives by artificial neural networks
Publikacja -
Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks
PublikacjaIn this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....
-
Application of neural networks for description of pressure distribution in slide bearing.
PublikacjaBadano rozkład ciśnienia hydrodynamicznego w łożysku ślizgowym dla wybranych wariantów łożyska. Wykazano, że zastosowanie sieci neuronowych umożliwia opis rozkładu ciśnienia hydrodynamicznego z uwzględnieniem zmian geometrycznych (bezwymiarowa długość - L) i mechanicznych (mimośrodowość względem H) łożyska.
-
Identification of slide bearing main parameters using neural networks.
PublikacjaWykazano, że sieci neuronowe jak najbardziej nadają się do identyfikacji głównych parametrów geometrycznych i ruchowych hydrodynamicznych łożysk ślizgowych.
-
DentalSegmentator: robust deep learning-based CBCT image segmentation
Publikacja -
Deep learning-based waste detection in natural and urban environments
Publikacja -
Generation of microbial colonies dataset with deep learning style transfer
Publikacja -
Optical Memory and Neural Networks (Information Optics)
Czasopisma -
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublikacjaDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublikacjaDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Comparative study of neural networks used in modeling and control of dynamic systems
PublikacjaIn this paper, a diagonal recurrent neural network that contains two recurrent weights in the hidden layer is proposed for the designing of a synchronous generator control system. To demonstrate the superiority of the proposed neural network, a comparative study of performances, with two other neural network (1_DRNN) and the proposed second-order diagonal recurrent neural network (2_DRNN). Moreover, to confirm the superiority...
-
Extended Hopfield models of neural networks for combinatorial multiobjective optimization problems
Publikacja -
Use of Neural Networks in Diagnostics of Rolling-Element Bearing of the Induction Motor
Publikacja -
Analysis of electrical patterns activity in artificial multi-stable neural networks
Publikacja -
Optimization of a three-bed adsorption chiller by genetic algorithms and neural networks
Publikacja -
Automatic singing voice recognition employing neural networks and rough sets
PublikacjaCelem prac opisanych w referacie jest automatyczne rozpoznawanie głosów śpiewaczych. Do tego celu utworzona została baza nagrań próbek śpiewu profesjonalnego i amatorskiego. Próbki poddane zostały parametryzacji parametrami zaproponowanymi przez autorów ściśle do tego celu. Sposób wyznaczenia parametrów i ich interpretacja fizyczna przedstawione są w referacie. Parametry wprowadzane są do systemów decyzyjnych, klasyfikatorów opartych...
-
Artificial Neural Networks for Prediction of Antibacterial Activity in Series of Imidazole Derivatives
Publikacja -
Neural Networks Based on Ultrafast Time-Delayed Effects in Exciton Polaritons
Publikacja -
Neural Networks in the Diagnostics Process of Low-Power Solar Plant Devices
Publikacja -
Application of the neural networks for developing new parametrization of the Tersoff potential for carbon
PublikacjaPenta-graphene (PG) is a 2D carbon allotrope composed of a layer of pentagons having sp2- and sp3-bonded carbon atoms. A study carried out in 2018 has shown that the parameterization of the Tersoff potential proposed in 2005 by Ehrhart and Able (T05 potential) performs better than other potentials available for carbon, being able to reproduce structural and mechanical properties of the PG. In this work, we tried to improve the...
-
Applying artificial neural networks for modelling ship speed and fuel consumption
PublikacjaThis paper deals with modelling ship speed and fuel consumption using artificial neural network (ANN) techniques. These tools allowed us to develop ANN models that can be used for predicting both the fuel consumption and the travel time to the destination for commanded outputs (the ship driveline shaft speed and the propeller pitch) selected by the ship operator. In these cases, due to variable environmental conditions, making...
-
Processing of musical data employing rough sets and artificial neural networks
PublikacjaArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Estimation of musical sound separation algorithm effectiveness employing neural networks.
PublikacjaŚlepa separacja dźwięków sygnałów muzycznych zawartych w zmiksowanym materiale jest trudnym zadaniem. Jest to spowodowane tym, że dźwięki znajdujące się w relacjach harmonicznych mogą zawierać kolidujące składowe sinusoidalne (składowe harmoniczne). Ewaluacja wyników separacji jest również problematyczna, gdyż analiza błędu energetycznego często nie odzwierciedla subiektywnej jakości odseparowanych sygnałów. W tej publikacji zostały...
-
Efficient uncertainty quantification using sequential sampling-based neural networks
PublikacjaUncertainty quantification (UQ) of an engineered system involves the identification of uncertainties, modeling of the uncertainties, and the forward propagation of the uncertainties through a system analysis model. In this work, a novel surrogate-based forward propagation algorithm for UQ is proposed. The proposed algorithm is a new and unique extension of the recent efficient global optimization using neural network (NN)-based...
-
Constrained aerodynamic shape optimization using neural networks and sequential sampling
PublikacjaAerodynamic shape optimization (ASO) involves computational fluid dynamics (CFD)-based search for an optimal aerodynamic shape such as airfoils and wings. Gradient-based optimization (GBO) with adjoints can be used efficiently to solve ASO problems with many design variables, but problems with many constraints can still be challenging. The recently created efficient global optimization algorithm with neural network (NN)-based prediction...
-
Bees Detection on Images: Study of Different Color Models for Neural Networks
PublikacjaThis paper presents an approach to bee detection in video streams using a neural network classifier. We describe the motivation for our research and the methodology of data acquisition. The main contribution to this work is a comparison of different color models used as an input format for a feedforward convolutional architecture applied to bee detection. The detection process has is based on a neural binary classifier that classifies...
-
The concept of application of artificial neural networks for cultivation controlof cartilages in bioreactors.
PublikacjaNowym elementem niniejszej pracy jest omówienie problemów związanych z możliwością sterowania parametrami hydrodynamicznymi hodowanej w bioreaktorze chrząstki stawowej przy wykorzystaniu sztucznych sieci neuronowych. Przedstawiona została architektura strategii sterowania hodowlą tkanki z zastosowaniem tych sieci.
-
Musical phrase representation and recognition by means of neural networks and rough sets.
PublikacjaW artykule przedstawiono podstawowe definicje dotyczące frazy muzycznej. W eksperymentach posłużono się zapisem parametrycznym. W celu wzmocnienia procesu rozpoznawania wykorzystano kodowanie entropijne muzyki. W eksperymentach klasyfikacji oparto się o sztuczne sieci neuronowe i metodę zbiorów przybliżonych. Słowa kluczowe: fraza muzyczna, klasyfikacja, sztuczne sieci neuronowe, metoda zbiorów przybliżonych
-
Processing of musical data employing rough sets and artificial neural networks
PublikacjaArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Comparison of effectiveness of musical sound separation algorithms employing neural networks.
PublikacjaNiniejszy referat przedstawia kilka algorytmów służących do separacji dźwięków instrumentów muzycznych. Zaproponowane podejście do dekompozycji miksów dźwiękowych opiera się na założeniu, że wysokość dźwięków w miksie jest znana, tzn. wejściem dla algorytmów jest przebieg zmian wysokości dźwięków składowych miksu. Proces estymacji fazy i amplitudy składowych harmonicznych wykorzystuje dopasowywanie zespolonych przebiegów harmonicznych...
-
Deep learning approach for delamination identification using animation of Lamb waves
Publikacja -
Deep learning super-resolution for the reconstruction of full wavefield of Lamb waves
Publikacja -
OmicSelector: automatic feature selection and deep learning modeling for omic experiments
Publikacja -
Deep Learning-Based Cellular Nuclei Segmentation Using Transformer Model
PublikacjaAccurate segmentation of cellular nuclei is imperative for various biological and medical applications, such as cancer diagnosis and drug discovery. Histopathology, a discipline employing microscopic examination of bodily tissues, serves as a cornerstone for cancer diagnosis. Nonetheless, the conventional histopathological diagnosis process is frequently marred by time constraints and potential inaccuracies. Consequently, there...
-
Orken Mamyrbayev Professor
Osoby1. Education: Higher. In 2001, graduated from the Abay Almaty State University (now Abay Kazakh National Pedagogical University), in the specialty: Computer science and computerization manager. 2. Academic degree: Ph.D. in the specialty "6D070300-Information systems". The dissertation was defended in 2014 on the topic: "Kazakh soileulerin tanudyn kupmodaldy zhuyesin kuru". Under my supervision, 16 masters, 1 dissertation...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublikacjaThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
Towards bees detection on images: study of different color models for neural networks
PublikacjaThis paper presents an approach to bee detection in videostreams using a neural network classifier. We describe the motivationfor our research and the methodology of data acquisition. The maincontribution to this work is a comparison of different color models usedas an input format for a feedforward convolutional architecture appliedto bee detection. The detection process has is based on a neural...
-
Adsorption chiller in a combined heating and cooling system: simulation and optimization by neural networks
Publikacja -
Self-organizing Artificial Neural Networks into Hydrographic Big Data Reduction Process
Publikacja -
Artificial Neural Networks in Classification of Steel Grades Based on Non-Destructive Tests
Publikacja -
Designing the Composition of Cement Stabilized Rammed Earth Using Artificial Neural Networks
Publikacja -
The Influence of Input Data Standardization Method on Prediction Accuracy of Artificial Neural Networks
Publikacja -
Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks
PublikacjaThe presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods....