Wyniki wyszukiwania dla: ELECTROMAGNETIC SIMULATION
-
Temperature Sensors Based on Polymer Fiber Optic Interferometer
PublikacjaTemperature measurements are of great importance in many fields of human activities, including industry, technology, and science. For example, obtaining a certain temperature value or a sudden change in it can be the primary control marker of a chemical process. Fiber optic sensors have remarkable properties giving a broad range of applications. They enable continuous real-time temperature control in difficult-to-reach areas, in...
-
Inline Waveguide Filter With Compact Frequency-Dependent Coupling Producing Two Additional Poles and Three Transmission Zeros
PublikacjaThis work reports a compact frequency-dependent coupling (FDC) structure introduced in a rectangular waveguide, which allows to generate two additional in-band transmission poles and three transmission zeros (TZs). This serves to increase the order/selectivity of the waveguide bandpass filter in a compact inline topology, thus without the need for any additional space/volume or cross coupling. The proposed FDC consists of a partial-height...
-
Analysis of aircraft magnetic interference
PublikacjaThe magnetometric method is used among other things on mobile platforms (planes, helicopters) in military systems and in geological research. Optically-pumped and SQUID magnetometers are used in magnetic systems on airplanes. To be able to attain the sensitivity of modern magnetometers in flight, it is important that maneuver-related magnetic interference effects be minimized. The mathematical model of an aircraft as a source of...
-
Rapid antenna design optimization using shape-preserving response prediction
PublikacjaAn approach to rapid optimization of antennas using the shape-preserving response-prediction (SPRP) technique and coarsediscretization electromagnetic (EM) simulations (as a low-fidelity model) is presented. SPRP allows us to estimate the response of the high-fidelity EM antenna model, e.g., its reflection coefficient versus frequency, using the properly selected set of so-called characteristic points of the low-fidelity model...
-
High Frequency Harmonics Emission of Modern Power Electronic AC-DC Converters
PublikacjaModern AC/DC converters with bidirectional power flow employing PWM boost topology generate harmonic distortions of input current in relatively high frequency range tightly related to modulation carrier frequency. These frequencies and its multiples in typical applications are usually located in frequency range from single up to several of kHz. Increased harmonic emission in this frequency range can easily and harmfully influence...
-
Analysis of aircraft magnetic interference
PublikacjaThe magnetometric method is used among other things on mobile platforms (planes, helicopters) in military systems and in geological research. Optically-pumped and SQUID magnetometers are used in magnetic systems on airplanes. To be able to attain the sensitivity of modern magnetometers in flight, it is important that maneuver-related magnetic interference effects be minimized. The mathematical model of an aircraft as a source of...
-
Rapid design closure of microwave components by means of feature-based optimization and adjoint sensitivities
PublikacjaIn this article, fast design closure of microwave components using feature-based optimization (FBO) and adjoint sensitivities is discussed. FBO is one of the most recent optimization techniques that exploits a particular structure of the system response to “flatten” the functional landscape handled during the optimization process, which leads to reducing its computational complexity. When combined with gradient-based search involving...
-
Common-Mode Voltage and Bearing Currents in PWM Inverters: Causes, Effects and Prevention
PublikacjaIn modern induction motor drives an increase of transistors' switching frequency and a decrease of switching times are the sources of some serious problems. The high dv/dt and the common mode voltage generated by the inverter PWM control results in the appearances of bearing currents, shaft voltages, motor terminal overvoltages, the decrease of motor efficiency, and electromagnetic interference. The aspects of common mode (CM)...
-
Fractional Order Circuit Elements Derived from Electromagnetism
PublikacjaIn this paper, derivations of fractional-order (FO) circuit-element equations from electromagnetism are presented. Whilst many papers are devoted to FO modelling of electrical circuits, there are no strong foundations for such an approach. Therefore, we investigate relations between the FO electromagnetism and the FO circuit theory. Our derivations start from quasi-static (QS) approximations of Maxwell's equations in media with...
-
A bisection‐based heuristic for rapid EM‐driven multiobjective design of compact impedance transformers
PublikacjaDesign of microwave structures is a multiobjective task where several conflicting requirements have to be considered at the same time. For contemporary circuits characterized by complex geometries, multiobjective optimization cannot be performed using standard population‐based algorithms due to high cost of electromagnetic (EM) evaluations. In this work, we propose a deterministic approach for fast EM‐driven multiobjective design...
-
Low-cost multi-objective design of compact microwave structures using domain patching
PublikacjaA good compromise between size and electrical performance is an important design consideration for compact microwave structures. Comprehensive information about size/performance trade-offs can be obtained through multi-objective optimization. Due to considerable electromagnetic (EM) cross-couplings in highly compressed layouts, the design process has to be conducted at the level of high-fidelity EM analysis which is computationally...
-
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
PublikacjaThis work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...
-
Low-Cost Behavioral Modeling of Antennas by Dimensionality Reduction and Domain Confinement
PublikacjaBehavioral modeling has been rising in importance in modern antenna design. It is primarily employed to diminish the computational cost of procedures involving massive full-wave electromagnetic (EM) simulations. Cheaper alternative offer surrogate models, yet, setting up data-driven surrogates is impeded by, among others, the curse of dimensionality. This article introduces a novel approach to reduced-cost surrogate modeling of...
-
Rapid multi-objective antenna design using point-by-point Pareto set identification and local surrogate models
PublikacjaAntenna design is inherently a multicriterial problem.Determination of the best possible tradeoffs between conflicting objectives (a so-called Pareto front), such as reflection response, gain, and antenna size, is indispensable from the designer’s point of view, yet challenging when high-fidelity electromagnetic (EM) simulations are utilized for performance evaluation. Here, a novel and computationally...
-
An extended basis inexact shift–invert Lanczos for the efficient solution of large-scale generalized eigenproblems
PublikacjaThis paper proposes a technique, based on the Inexact Shift–Invert Lanczos (ISIL) method with Inexact Jacobi Orthogonal Component Correction (IJOCC) refinement, and a preconditioned conjugate-gradient (PCG) linear solver with multilevel preconditioner, for finding several eigenvalues for generalized symmetric eigenproblems. Several eigenvalues are found by constructing (with the ISIL process) an extended projection basis. Presented...
-
Multimode systems of nonlinear equations: derivation, integrability, and numerical solutions
PublikacjaWe consider the propagation of electromagnetic pulses in isotropic media taking a third-order nonlinearityinto account. We develop a method for transforming Maxwell's equations based on a complete set ofprojection operators corresponding to wave-dispersion branches (in a waveguide or in matter) with thepropagation direction taken into account. The most important result of applying the method is a systemof equations describing the...
-
Suppression of distortions in signals received from Doppler sensor for vehicle speed measurement
PublikacjaDoppler sensors are commonly used for movement detection and speed measurement. However, electromagnetic interference and imperfections in sensor construction result in degradation of the signal to noise ratio. As a result, detection of signals reflected from moving objects becomes problematic. The paper proposes an algorithm for reduction of distortions and noise in the signal received from a simple, dual-channel type of a Doppler...
-
Single and Dual-GPU Generalized Sparse Eigenvalue Solvers for Finding a Few Low-Order Resonances of a Microwave Cavity Using the Finite-Element Method
PublikacjaThis paper presents two fast generalized eigenvalue solvers for sparse symmetric matrices that arise when electromagnetic cavity resonances are investigated using the higher-order finite element method (FEM). To find a few loworder resonances, the locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm with null-space deflation is applied. The computations are expedited by using one or two graphical processing...
-
Signal Propagation in Electromagnetic Media Modelled by the Two-Sided Fractional Derivative
PublikacjaIn this paper, wave propagation is considered in a medium described by a fractional-order model, which is formulated with the use of the two-sided fractional derivative of Ortigueira and Machado. Although the relation of the derivative to causality is clearly specified in its definition, there is no obvious relation between causality of the derivative and causality of the transfer function induced by this derivative. Hence, causality...
-
Reduced-cost surrogate modelling of compact microwave components by two-level kriging interpolation
PublikacjaFull-wave electromagnetic (EM) analysis is a versatile tool for evaluating the performance of high-frequency components. Its potential drawback is its high computational cost, inhibiting the execution of EM-driven tasks requiring massive simulations. The applicability of equivalent network models is limited owing to the topological complexity of compact microstrip components because of EM cross-coupling effects. Development of...
-
Rapid redesign of multiband antennas with respect to operating conditions and material parameters of substrate
PublikacjaThis work addresses geometry parameter scaling of multi-band antennas for Internet of Things applications. The presented approach is comprehensive and permits re-design of the structure with respect to both the operating frequencies and material parameters of the dielectric substrate. A two-step procedure is developed with the initial design obtained from an inverse surrogate model constructed using a set of appropriately prepared...
-
Home Sweet Home. Connecting the dots for healthy evening residential illumination
PublikacjaDuring the twentieth century, lighting designers would commonly use incandescent light sources for residential homes as they provided a visual comfort, with high quality colour rendering properties, along with relaxing ambient atmosphere. Unfortunately, it’s now difficult to buy incandescent light sources because they have been banned in many countries (https://bit.ly/2GwN2Wv). This article addresses some of the challenges in regards...
-
Underwater Acoustic Imaging of the Sea
PublikacjaAcoustic waves are a carrier of information mainly in environments where the use of other types of waves, for example electromagnetic waves, is limited. The term acoustical imaging is widely used in the ultrasonic engineering to imaging areas in which the acoustic waves propagate. In particular, ultrasound is widely used in the visualization of human organs - ultrasonography (Nowicki, 2010). Expanding the concept, acoustical imaging...
-
Fast surrogate-assisted frequency scaling of planar antennas with circular polarisation
PublikacjaIn this work, the problem of computationally efficient frequency scaling (re-design) of circular polarisation antennas is addressed using surrogate-assisted techniques. The task is challenging and requires the identification of the optimum geometry parameters to enable the operation of the re-designed structure at a selected (required) centre frequency. This involves handling several performance figures such as the antenna gain,...
-
Polymer Materials for U-Shaped Optic Fiber Sensors: A Review
PublikacjaFiber optic sensors have gained popularity over the last few decades. This is due to their numerous advantages, such as good metrological parameters, biocompatibility and resistance to magnetic and electric fields and environmental pollution. However, those built from glass fiber have one main disadvantage—they are fragile, meaning they can be easily damaged, even by the presence of vibration. Due to the great progress made by...
-
A Miniaturized and High Optically Transparent Frequency Selective Surface for RF Shielding using Double-Glazed Glass Windows for Green Building Applications
PublikacjaThis research presents a miniaturized and high optically transparent (OT) frequency selective surface (FSS) for achieving RF shielding through glass window panels. The proposed FSS consists of a single-layered copper pattern sandwiched between two ordinary glass substrates to suppress the dual bands of sub-6 fifth generation (5G). In particular, the design effectively shields n65-downlink (2.1 GHz) and a portion of n78-band (3.5...
-
Multitaper-Based Post-processing of Compact Antenna Responses Obtained in Non-anechoic Conditions
PublikacjaThe process of developing antenna structures typically involves prototype measurements. While accurate validation of far-field performance can be performed in dedicated facilities like anechoic chambers, high cost of construction and maintenance might not justify their use for teaching, or low-budget research scenarios. Non-anechoic experiments provide a cost-effective alternative, however the performance metrics obtained in such...
-
Efficient Multi-Fidelity Design Optimization of Microwave Filters Using Adjoint Sensitivity
PublikacjaA simple and robust algorithm for computationally efficient design optimiza-tion of microwave filters is presented. Our approach exploits a trust-region (TR)-based algorithm that utilizes linear approximation of the filter response obtained using adjoint sensitivity. The algorithm is sequentially executed on a family of electromagnetic (EM)-simulated models of different fidelities, starting from a coarse-discretization one, and...
-
Bezczujnikowe sterowanie trakcyjnym silnikiem IPMSM małej mocy
PublikacjaThis paper describes an algorithm for estimation of IPMSM angular rotor position. The algorithm uses derivatives of motor phase currents resulting from PWM modulation to obtain the rotor position. Control of the IPMSM electromagnetic torque requires a precise estimation of the rotor angular position throughout the wide speed range. This involves using a set of estimation methods switched with the dependence on the actual rotor...
-
Properties of ordered titanium templates covered with Au thin films for SERS applications
PublikacjatCurrently, roughened metal nanostructures are widely studied as highly sensitive Raman scattering sub-strates that show application potential in biochemistry, food safety or medical diagnostic. In this workthe structural properties and the enhancement effect due to surface enhanced Raman scattering (SERS) ofhighly ordered nano-patterned titanium templates covered with thin (5–20 nm) gold films are reported.The templates are formed...
-
Block Conjugate Gradient Method with Multilevel Preconditioning and GPU Acceleration for FEM Problems in Electromagnetics
PublikacjaIn this paper a GPU-accelerated block conjugate gradient solver with multilevel preconditioning is presented for solving large system of sparse equations with multiple right hand-sides (RHSs) which arise in the finite-element analysis of electromagnetic problems. We demonstrate that blocking reduces the time to solution significantly and allows for better utilization of the computing power of GPUs, especially when the system matrix...
-
Inverse modeling for fast design optimization of small-size rat-race couplers incorporating compact cells
PublikacjaIn the paper, a framework for computationally-efficient design optimization of compact rat-race couplers (RRCs) is discussed. A class of hybrid RRCs with variable operating conditions is investigated, whose size reduction is obtained by replacing ordinary transmission lines with compact microstrip resonant cells (CMRCs). Our approach employs a bottom-up design strategy leading to the development of compact RRCs through rapid design...
-
Multimodal Particle Swarm Optimization with Phase Analysis to Solve Complex Equations of Electromagnetic Analysis
PublikacjaIn this paper, a new meta-heuristic method of finding roots and poles of a complex function of a complex variable is presented. The algorithm combines an efficient space exploration provided by the particle swarm optimization (PSO) and the classification of root and pole occurrences based on the phase analysis of the complex function. The method initially generates two uniformly distributed populations of particles on the complex...
-
Design of a compact planar transmission line for miniaturized rat-race coupler with harmonics suppression
PublikacjaThis paper presents an elegant yet straightforward design procedure for a compact rat-race coupler (RRC) with an extended harmonic suppression. The coupler’s conventional λ/4 transmission lines (TLs) are replaced by a specialized TL that offers significant size reduction and harmonic elimination capabilities in the proposed approach. The design procedure is verified through the theoretical, circuit, and electromagnetic (EM) analyses,...
-
EM‐driven constrained miniaturization of antennas using adaptive in‐band reflection acceptance threshold
PublikacjaNumerical optimization of geometry parameters is a critical stage of the design process of compact antennas. It is also challenging because size reduction is constrained by the necessity of fulfilling imposed electrical performance requirements. Furthermore, full‐wave electromagnetic (EM) analysis needs to be used for reliable performance evaluation of the antenna structure, which is computationally expensive. In this paper, an...
-
Kriging metamodels and design re‐utilization for fast parameter tuning of antenna structures
PublikacjaThe paper addresses the problem of computationally efficient electromagnetic (EM)‐driven design closure of antenna structures. The foundations of the presented approach are fast kriging interpolation metamodels, utilized for two purposes: (a) producing a good starting point for further parameter tuning, and (b) yielding a reasonable Jacobian matrix estimate to jump‐start the optimization procedure. The models are rendered using...
-
Problems of Measuring Gas Content in Oil in a Two-Phase Flow: A Review
PublikacjaIn view of the necessity of measuring the air content in oil in two-phase flows in the context of general industry, a review of the most popular methods of measuring the air content in oil was carried out. This review includes an assessment of their advantages and disadvantages and of whether they meet criteria such as the degree of filling, the size and number of bubbles, verification, the absence of additional pressure drops,...
-
Analysis of nonlinear eigenvalue problems for guides and resonators in microwave and terahertz technology
PublikacjaThis dissertation presents developed numerical tools for investigating waveguides and resonators' properties for microwave and terahertz technology. The electromagnetics analysis requires solving complex eigenvalue problems, representing various parameters such as resonant frequency or propagation coefficient. Solving equations with eigenvalue boils down to finding the roots of the determinant of the matrix. At the beginning, one...
-
Design of Frequency-Reconfigurable Branch-Line Crossover Using Rectangular Dielectric Channels
PublikacjaThis paper presents an efficient yet straightforward passive reconfiguration technique to tune the operating frequency of a branch-line crossover (BLCO). The underlying principle is to fill rectangular dielectric channels (RDCs) prepared beforehand with either air or materials of different relative permittivity. Two configurations (one RDC and three RDCs in each arm) of the branch-line crossover are employed to estimate the tunability...
-
Windowing of the Discrete Green's Function for Accurate FDTD Computations
PublikacjaThe paper presents systematic evaluation of the applicability of parametric and nonparametric window functions for truncation of the discrete Green's function (DGF). This function is directly derived from the FDTD update equations, thus the FDTD method and its integral discrete formulation can be perfectly coupled using DGF. Unfortunately, the DGF computations require processor time, hence DGF has to be truncated with appropriate...
-
Diagnostics of induction motor bearings - possibility of measurements
PublikacjaIn induction motors damage in the elements of electromagnetic system, for example in the wiring of stator, rotor or in the magnetic circuit can appear as well as damage of mechanical parts (bearings, rotor, shaft). Bearing diagnostics is so important in supervision of motor condition, because extensive research shows that the bearings arethe elements most susceptible to damage. This paper presents the research which the author...
-
Application of the Monte Carlo algorithm for solving volume integral equation in light scattering simulations
PublikacjaVarious numerical methods were proposed for analysis of the light scattering phenomenon. Important group of these methods is based on solving the volume integral equation describing the light scattering process. The popular method from this group is the discrete dipole approximation (DDA). DDA uses various numerical algorithms to solve the discretized integral equation. In the recent years, the application of the Monte Carlo (MC)...
-
Quasi-Global Optimization of Antenna Structures Using Principal Components and Affine Subspace-Spanned Surrogates
PublikacjaParametric optimization is a mandatory step in the design of contemporary antenna structures. Conceptual development can only provide rough initial designs that have to be further tuned, often extensively. Given the topological complexity of modern antennas, the design closure necessarily involves full-wave electromagnetic (EM) simulations and—in many cases—global search procedures. Both factors make antenna optimization a computationally...
-
Expedited Gradient-Based Design Closure of Antennas Using Variable-Resolution Simulations and Sparse Sensitivity Updates
PublikacjaNumerical optimization has been playing an increasingly important role in the design of contemporary antenna systems. Due to the shortage of design-ready theoretical models, optimization is mainly based on electromagnetic (EM) analysis, which tends to be costly. Numerous techniques have evolved to abate this cost, including surrogate-assisted frameworks for global optimization, or sparse sensitivity updates for speeding up local...
-
On Decomposition-Based Surrogate-Assisted Optimization of Leaky Wave Antenna Input Characteristics for Beam Scanning Applications
PublikacjaRecent years have witnessed a growing interest in reconfigurable antenna systems. Travelling wave antennas (TWAs) and leaky wave antennas (LWAs) are representative examples of structures featuring a great level of flexibility (e.g., straightforward implementation of beam scanning), relatively simple geometrical structure, low profile, and low fabrication cost. Notwithstanding, the design process of TWAs/LWAs is a challenging endeavor...
-
Performance-Driven Inverse/Forward Modeling of Antennas in Variable-Thickness Domains
PublikacjaDesign of contemporary antenna systems is a challenging endeavor. The difficulties are partially rooted in stringent specifications imposed on both electrical and field characteristics, demands concerning various functionalities, but also constraints imposed upon the physical size of the radiators. Furthermore, conducting the design process at the level of full-wave electromagnetic (EM) simulations, otherwise dictated by reliability,...
-
Inline Waveguide Filter With Transmission Zeros Using a Modified-T-Shaped-Post Coupling Inverter
PublikacjaThis letter reports the design techniques for a class 2 of inline waveguide bandpass filters with sharp-rejection capabil3 ities at the lower stopband based on a novel nonlinear-frequency4 variant-coupling (NFVC) structure. The proposed NFVC consists 5 of a modified-T-shaped metallic post (MTP) that is placed at the 6 center of the waveguide broad wall with its open arms lying 7 along the waveguide width. The engineered NFVC structure 8...
-
Thermomagnetic behavior of a semiconductor material heated by pulsed excitation based on the fourth-order MGT photothermal model
PublikacjaThis article proposes a photothermal model to reveal the thermo-magneto-mechanical properties of semiconductor materials, including coupled diffusion equations for thermal conductivity, elasticity, and excess carrier density. The proposed model is developed to account for the optical heating that occurs through the semiconductor medium. The Moore–Gibson–Thompson (MGT) equation of the fourth-order serves as the theoretical framework...
-
Rapid Microwave Design Optimization in Frequency Domain Using Adaptive Response Scaling
PublikacjaIn this paper, a novel methodology for cost-efficient microwave design optimization in the frequency domain is proposed. Our technique, referred to as adaptive response scaling (ARS), has been developed for constructing a fast replacement model (surrogate) of the high-fidelity electromagnetic-simulated model of the microwave structure under design using its equivalent circuit (low-fidelity model). The basic principle of ARS is...
-
Numerically efficient algorithm for compact microwave device optimization with flexible sensitivity updating scheme
PublikacjaAn efficient trust-region algorithm with flexible sensitivity updating management scheme for electromagnetic (EM)-driven design optimization of compact microwave components is proposed. During the optimization process, updating of selected columns of the circuit response Jacobian is performed using a rank-one Broyden formula (BF) replacing finite differentiation (FD). The FD update is omitted for directions sufficiently well aligned...