Filtry
wszystkich: 550
Wyniki wyszukiwania dla: aircraft operation, classification, neural networks
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublikacjaIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
Adaptacyjny algorytm filtracji sygnału fonokardiograficznego wykorzystujący sztuczną sieć neuronową
PublikacjaPodstawowym problemem podczas projektowania systemu autodiagnostyki chorób serca, bazującego na analizie sygnału fonokardiograficznego (PCG), jest konieczność zapewnienia, niezależnie od warunków zewnętrznych, sygnału o wysokiej jakości. W artykule, bazując na zdolności Sztucznej Sieci Neuronowej (SSN) do predykcji sygnałów periodycznych oraz quasi-periodycznych, został opracowany adaptacyjny algorytm filtracji dźwięków serca....
-
Collaborative Data Acquisition and Learning Support
PublikacjaWith the constant development of neural networks, traditional algorithms relying on data structures lose their significance as more and more solutions are using AI rather than traditional algorithms. This in turn requires a lot of correctly annotated and informative data samples. In this paper, we propose a crowdsourcing based approach for data acquisition and tagging with support for Active Learning where the system acts as an...
-
Signal Processing in the Investigation of Two-phase Liquid-gas Flow by Gamma-ray Absorption
Publikacjan this paper, the use of the gamma-absorption method applied in the investigation of the two-phase liquid-gas flow in the pipeline is described. An example of its application to the air transported by water in a horizontal pipeline is evaluated. In the measurements, Am-241 radioactive sources and probes with Nal (Tl) scintillation crystals have been used. The signals from the radiometric set were used to determine the velocity...
-
Evaluating Performance and Accuracy Improvements for Attention-OCR
PublikacjaIn this paper we evaluated a set of potential improvements to the successful Attention-OCR architecture, designed to predict multiline text from unconstrained scenes in real-world images. We investigated the impact of several optimizations on model’s accuracy, including employing dynamic RNNs (Recurrent Neural Networks), scheduled sampling, BiLSTM (Bidirectional Long Short-Term Memory) and a modified attention model. BiLSTM was...
-
Novel Family of Single-Phase Modified Impedance-Source Buck-Boost Multilevel Inverters With Reduced Switch Count
Publikacjahis paper describes novel single-phase solutions with increased inverter voltage levels derived by means of a nonstandard inverter configuration and impedance source networks. Operation principles based on special modulation techniques are presented. Detailed component design guidelines along with simulation and experimental verification are also provided. Possible application fields are discussed, as well as advantages and disadvantages....
-
Deep learning based thermal image segmentation for laboratory animals tracking
PublikacjaAutomated systems for behaviour classification of laboratory animals are an attractive alternative to manual scoring. However, the proper animals separation and tracking, especially when they are in close contact, is the bottleneck of the behaviour analysis systems. In this paper, we propose a method for the segmentation of thermal images of laboratory rats that are in close contact during social behaviour tests. For this, we are...
-
Musical Instrument Identification Using Deep Learning Approach
PublikacjaThe work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...
-
Zastosowanie sieci neuronowych do detekcji impulsów o znanym kształcie w obecności silnego szumu i trendu
PublikacjaDetekcja impulsów w odebranym sygnale radiowym, zwłaszcza w obecności silnego szumu oraz trendu, jest trudnym zadaniem. Artykuł przedstawia propozycje rozwiązań wykorzystujących sieci neuronowe do detekcji impulsów o znanym kształcie w obecności silnego szumu i trendu. Na potrzeby realizacji tego zadania zaproponowano dwie architektury. W pracy przedstawiono wyniki badań wpływu kształtu impulsu, mocy zakłóceń szumowych oraz trendu...
-
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublikacjaHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
Modelling and analysis of a synchronous generator in more electric aircraft power system using Synopsys/Saber simulator = Modelowanie i analiza generatora synchronicznego w systemie elektroenergetycznym nowoczesnego samolotu. Zastosowanie symulatora Synopsys/Saber
PublikacjaStreszczenie angielskie: A model for studying synchronous machine (SM) dynamic behaviour in more electric aircraft (MEA) power system is developed and implemented in the Synopys/Saber simulation environment. The modelling language MAST has been used to elaborate the SM model. The elaborated model exhibit a network with the same number of external terminals/ports as the real SM, and represents its behaviour in terms of the electrical...
-
Path Loss Analysis for the IoT Applications in the Urban and Indoor Environments
PublikacjaThe Internet of Things (IoT) networks concept implies their presence in a various and untypical locations, usually with a disturbed radio signals propagation. In the presented paper an investigation of an additional path loss observed in an underground environment was described. The proposed measurement locations correspond to the operation areas of rapidly growing narrowband IoT (NBIoT) networks, the ones using the Long Term Evolution...
-
Wireless Body Area Network for Preventing Self-Inoculation Transmission of Respiratory Viral Diseases
PublikacjaThis paper proposes an idea of Wireless Body Area Networks (WBANs) based on Bluetooth Low-Energy (BLE) standards to recognize and alarm a gesture of touching the face, and in effect, to prevent self-inoculation of respiratory viral diseases, such as COVID-19 or influenza A, B, or C. The proposed network comprises wireless modules placed in bracelets and a necklace. It relies on the received signal strength indicator (RSSI) measurements...
-
Matching Exception Class Hierarchies between .NET, Java Environments
PublikacjaThe paper presents a methodology of exception classification and matching exception messages between .NET andJava environments. The methodology operates on existing exception class hierarchies and proposes two complementingapproaches: automated and manual matching. The automated matching uses the similarity measure to find associationsbetween exception messages from the two sets of classes for the considered programming languages....
-
Monitoring of odour nuisance in the Tricity Agglomeration
PublikacjaThe paper describes a principle of operation of odour nuisance monitoring network, which is being designed in the Tricity Agglomeration. Moreover, it presents the preliminary results of an investigation on ambient air quality with respect to odour nuisance in a vicinity of the municipal landfill. The investigation was performed during spring-winter season using a prototype of electronic nose and the Nasal Ranger field olfactometers. The...
-
Collective citizens' behavior modelling with support of the Internet of Things and Big Data
PublikacjaIn this paper, collective human behaviors are modelled by a development of Big Data mining related to the Internet of Things. Some studies under MapReduce architectures have been carried out to improve an efficiency of Big Data mining. Intelligent agents in data mining have been analyzed for smart city systems, as well as data mining has been described by genetic programming. Furthermore, artificial neural networks have been discussed...
-
Special techniques and future perspectives: Simultaneous macro- and micro-electrode recordings
PublikacjaThere are many approaches to studying the inner workings of the brain and its highly interconnected circuits. One can look at the global activity in different brain structures using non-invasive technologies like positron emission tomography (PET) or functional magnetic resonance imaging (fMRI), which measure physiological changes, e.g. in the glucose uptake or blood flow. These can be very effectively used to localize active patches...
-
Knowledge-based functional safety and security management in hazardous industrial plants with emphasis on human factors
PublikacjaExisting and emerging new hazards have significant potential to impact destructively operation of technical systems, hazardous plants, and systems / networks of critical infrastructure. The programmable control and protection systems play nowadays an important role in reducing and controlling risk in the process of hazardous plant operation. It is outlined how to deal with security related hazards concerning such systems to be...
-
Risk Diagnosis and Management with BBN for Civil Engineering Projects during Construction and Operation
PublikacjaThe authors demonstrate how expert knowledge about the construction and operation phases combined with monitoring data can be utilized for the diagnosis and management of risks typical to large civil engineering projects. The methodology chosen for estimating the probabilities of risk elements is known as Bayesian Belief Networks (BBN). Using a BBN model one can keep on updating the risk event probabilities as the new evidence...
-
The voltage on bus bars of the main switchboard of the ferry electrical power system during a sea voyage
Dane BadawczeThe dataset is part of the research results on the quality of supply voltage on bus bars of the main switchboard of the ship's electrical power system in different states of ship exploitation. The attached dataset contains the measurement results carried out onboard the ferry during a sea voyage.
-
Development of a tropical disease diagnosis system using artificial neural network and GIS
PublikacjaExpert systems for diagnosis of tropical diseases have been developed and implemented for over a decade with varying degrees of success. While the recent introduction of artificial neural networks has helped to improve the diagnosis accuracy of such systems, this aspect is still negatively affected by the number of supported diseases. A large number of supported diseases usually corresponds to a high number of overlapping symptoms,...
-
Shape Optimisation of Kaplan Turbine Blades Using Genetic Algorithms
PublikacjaThis monograph is a comprehensive guide to a method of blade profile optimisation for Kaplan-type turbines. This method is based on modelling the interaction between rotor and stator blades. Additionally, the shape of the draft tube is investigated. The influence of the periodic boundary condition vs. full geometry is also discussed. Evolutionary algorithms (EA) are used as an optimisation method together with artificial neural...
-
ANN for human pose estimation in low resolution depth images
PublikacjaThe paper presents an approach to localize human body joints in 3D coordinates based on a single low resolution depth image. First a framework to generate a database of 80k realistic depth images from a 3D body model is described. Then data preprocessing and normalization procedure, and DNN and MLP artificial neural networks architectures and training are presented. The robustness against camera distance and image noise is analysed....
-
Using deep learning to increase accuracy of gaze controlled prosthetic arm
PublikacjaThis paper presents how neural networks can be utilized to improve the accuracy of reach and grab functionality of hybrid prosthetic arm with eye tracing interface. The LSTM based Autoencoder was introduced to overcome the problem of lack of accuracy of the gaze tracking modality in this hybrid interface. The gaze based interaction strongly depends on the eye tracking hardware. In this paper it was presented how the overall the...
-
An ANN-Based Method for On-Load Tap Changer Control in LV Networks with a Large Share of Photovoltaics—Comparative Analysis
PublikacjaThe paper proposes a new local method of controlling the on-load tap changer (OLTC) of a transformer to mitigate negative voltage phenomena in low-voltage (LV) networks with a high penetration of photovoltaic (PV) installations. The essence of the method is the use of the load compensation (LC) function with settings determined via artificial neural network (ANN) algorithms. The proposed method was compared with other selected...
-
An Analysis of the Performance of Lightweight CNNs in the Context of Object Detection on Mobile Phones
PublikacjaConvolutional Neural Networks (CNNs) are widely used in computer vision, which is now increasingly used in mobile phones. The problem is that smartphones do not have much processing power. Initially, CNNs focused solely on increasing accuracy. High-end computing devices are most often used in this type of research. The most popular application of lightweight CNN object detection is real-time image processing, which can be found...
-
Analiza warunków pracy silnika spalinowego lokomotywy na biegu jałowym
PublikacjaW trakcie eksploatacji lokomotyw z silnikami spalinowymi obserwowany jest znaczny udział pracy silnika spalinowego w stanie biegu jałowego. Dlatego też średnia wartość strumienia paliwa zużywanego przez silnik spalinowy lokomotywy w tym stanie będzie miała istotny wpływ na efektywność energetyczną układu napędowego. Wyznaczaniu wartości tego parametru musi towarzyszyć jednoznaczna klasyfikacja warunków pracy układu napędowego lokomotywy....
-
Inteligentne systemy agentowe w systemach zdalnego nauczania
PublikacjaW pracy omówiono inteligentne systemy agentowe w systemach zdalnego nauczania. Po krótkim przedstawieniu ewolucji systemów zdalnego nauczania i ich wybranych zastosowań, scharakteryzowano inteligentne agenty edukacyjne. Omówiono wykorzystanie programowania genetycznego oraz algorytmów neuro-ewolucyjnych do implementacji oprogramowania tej klasy. Ponadto, nawiązano do modelu Map-Reduce, który efektywnie wspiera architekturę nowoczesnego...
-
Assessment and Optimization of Air Monitoring Network for Smart Cities with Multicriteria Decision Analysis
PublikacjaEnvironmental monitoring networks need to be designed in efficient way, to minimize costs and maximize the information granted by their operation. Gathering data from monitoring stations is also the essence of Smart Cities. Agency of Regional Air Quality Monitoring in the Gdańsk Metropolitan Area (pol. ARMAAG) was assessed in terms of its efficiency to obtain variety of information. The results on one-month average concentrations...
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublikacjaW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
Enhancing voice biometric security: Evaluating neural network and human capabilities in detecting cloned voices
PublikacjaThis study assesses speaker verification efficacy in detecting cloned voices, particularly in safety-critical applications such as healthcare documentation and banking biometrics. It compares deeply trained neural networks like the DeepSpeaker with human listeners in recognizing these cloned voices, underlining the severe implications of voice cloning in these sectors. Cloned voices in healthcare could endanger patient safety by...
-
Examining Classifiers Applied to Static Hand Gesture Recognition in Novel Sound Mixing System
PublikacjaThe main objective of the chapter is to present the methodology and results of examining various classifiers (Nearest Neighbor-like algorithm with non-nested generalization (NNge), Naive Bayes, C4.5 (J48), Random Tree, Random Forests, Artificial Neural Networks (Multilayer Perceptron), Support Vector Machine (SVM) used for static gesture recognition. A problem of effective gesture recognition is outlined in the context of the system...
-
Music Mood Visualization Using Self-Organizing Maps
PublikacjaDue to an increasing amount of music being made available in digital form in the Internet, an automatic organization of music is sought. The paper presents an approach to graphical representation of mood of songs based on Self-Organizing Maps. Parameters describing mood of music are proposed and calculated and then analyzed employing correlation with mood dimensions based on the Multidimensional Scaling. A map is created in which...
-
Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
PublikacjaIn the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...
-
Deep learning in the fog
PublikacjaIn the era of a ubiquitous Internet of Things and fast artificial intelligence advance, especially thanks to deep learning networks and hardware acceleration, we face rapid growth of highly decentralized and intelligent solutions that offer functionality of data processing closer to the end user. Internet of Things usually produces a huge amount of data that to be effectively analyzed, especially with neural networks, demands high...
-
Improvement of speech intelligibility in the presence of noise interference using the Lombard effect and an automatic noise interference profiling based on deep learning
PublikacjaThe Lombard effect is a phenomenon that results in speech intelligibility improvement when applied to noise. There are many distinctive features of Lombard speech that were recalled in this dissertation. This work proposes the creation of a system capable of improving speech quality and intelligibility in real-time measured by objective metrics and subjective tests. This system consists of three main components: speech type detection,...
-
Wireless Link Selection Methods for Maritime Communication Access Networks—A Deep Learning Approach
PublikacjaIn recent years, we have been witnessing a growing interest in the subject of communication at sea. One of the promising solutions to enable widespread access to data transmission capabilities in coastal waters is the possibility of employing an on-shore wireless access infrastructure. However, such an infrastructure is a heterogeneous one, managed by many independent operators and utilizing a number of different communication...
-
Optical Sensor Based Gestures Inference Using Recurrent Neural Network in Mobile Conditions
PublikacjaIn this paper the implementation of recurrent neural network models for hand gesture recognition on edge devices was performed. The models were trained with 27 hand gestures recorded with the use of a linear optical sensor consisting of 8 photodiodes and 4 LEDs. Different models, trained off-line, were tested in terms of different network topologies (different number of neurons and layers) and different effective sampling frequency...
-
Open extensive IoT research and measurement infrastructure for remote collection and automatic analysis of environmental data.
PublikacjaInternet of Things devices that send small amounts of data do not need high bit rates as it is the range that is more crucial for them. The use of popular, unlicensed 2.4 GHz and 5 GHz bands is fairly legally enforced (transmission power above power limits cannot be increased). In addition, waves of this length are very diffiult to propagate under field conditions (e.g. in urban areas). The market response to these needs are the...
-
Examination of 5G NR, LTE, and NB-IoT Radio Interfaces and Their Vulnerabilities to Interference
PublikacjaModern cellular wireless communication systems of the fourth (4G) and fifth generation (5G) face a problem of various types of interference or intentional jamming. Consequently, a degradation of the services provided and an incorrect network operation may occur. In this paper, configuration of the networks’ physical layer is investigated, with the said investigation preceded by the measurement of parameters of commercial networks...
-
Fragmentation of Hydrographic Big Data Into Subsets During Reduction Process
PublikacjaThe article presented problems of fragmentation of hydrographic big data into smaller subsets during reduction process. Data reduction is a processing of reduce the value of the data set, in order to make them easier and more effective for the goals of the analysis. The main aim of authors is to create new reduction method. The article presented the first stage of this method – fragmentation of bathymetric data into subsets. It...
-
Residual MobileNets
PublikacjaAs modern convolutional neural networks become increasingly deeper, they also become slower and require high computational resources beyond the capabilities of many mobile and embedded platforms. To address this challenge, much of the recent research has focused on reducing the model size and computational complexity. In this paper, we propose a novel residual depth-separable convolution block, which is an improvement of the basic...
-
Interpretable Deep Learning Model for the Detection and Reconstruction of Dysarthric Speech
PublikacjaWe present a novel deep learning model for the detection and reconstruction of dysarthric speech. We train the model with a multi-task learning technique to jointly solve dysarthria detection and speech reconstruction tasks. The model key feature is a low-dimensional latent space that is meant to encode the properties of dysarthric speech. It is commonly believed that neural networks are black boxes that solve problems but do not...
-
Fault detection in measuring systems of power plants
PublikacjaThis paper describes possibility of forming diagnostic relations based on application of the artifical neural networks (ANNs), intended for the identifying of degradation of measuring instruments used in developed power systems. As an example a steam turbine high-power plant was used. And, simulative calculations were applied to forming diagnostic neural relations. Both degradation of the measuring instruments and simultaneously...
-
Urban scene semantic segmentation using the U-Net model
PublikacjaVision-based semantic segmentation of complex urban street scenes is a very important function during autonomous driving (AD), which will become an important technology in industrialized countries in the near future. Today, advanced driver assistance systems (ADAS) improve traffic safety thanks to the application of solutions that enable detecting objects, recognising road signs, segmenting the road, etc. The basis for these functionalities...
-
LDRAW based positional renders of LEGO bricks
Dane Badawcze243 different LEGO bricks renders of size 250x250 in 5 colors in 120 viewing angles stored as JPEG images. The renders are used to train neural networks for bricks recognition. All images were generated using L3P (http://www.hassings.dk/l3/l3p.html) and POV-Ray (http://www.povray.org/) tools and were based on the 3D models from LDraw (https://www.ldraw.org/)...
-
Categorization of emotions in dog behavior based on the deep neural network
PublikacjaThe aim of this article is to present a neural system based on stock architecture for recognizing emotional behavior in dogs. Our considerations are inspired by the original work of Franzoni et al. on recognizing dog emotions. An appropriate set of photographic data has been compiled taking into account five classes of emotional behavior in dogs of one breed, including joy, anger, licking, yawning, and sleeping. Focusing on a particular...
-
Analysis of Ferroresonance Mitigation Effectiveness in Auxiliary Power Systems of High-Voltage Substations
PublikacjaFerroresonance in power networks is a dangerous phenomenon, which may result in overcurrents and overvoltages, causing damage to power equipment and the faulty operation of protection systems. For this reason, the possibility of the occurrence of ferroresonance has to be identified, and adequate methods need to be incorporated to eliminate or reduce its effects. The aim of this paper is to evaluate the effectiveness of ferroresonance...
-
Next generation ITS implementation aspects in 5G wireless communication network
PublikacjaIn the paper the study of Intelligent Transportation systems implementation in the 5G wireless communication network is presented. Firstly, small-cell concept in Ultra Dense Heterogeneous network was analyzed. Secondly, the 5G network requirements were presented which are important from the point of view of transportation systems development. Next, the study on the 5G network architectures proposals dedicated to the ITS systems...
-
A Cross-Polarisation Discrimination Analysis of Off-Body Channels in Passenger Ferryboat Environments
PublikacjaThere is a need for investigating radio channels for Body Area Networks considering the depolarisation phenomenon and new types of environments, since these aspects are becoming very important for systems design and deployment. This paper presents an analysis of cross-polarisation discrimination for off-body channels based on a measurement campaign performed in a passenger ferryboat, i.e., where all walls, floors and ceilings are...