Filtry
wszystkich: 27
Wyniki wyszukiwania dla: 4-manifolds
-
Minimization of the number of periodic points for smooth self-maps of closed simply-connected 4-manifolds
PublikacjaLet M be a smooth closed simply-connected 4-dimensional manifold, f be a smooth self-map of M with fast grow of Lefschetz numbers and r be a product of different primes. The authors calculate the invariant equal to the minimal number of r-periodic points in the smooth homotopy class of f.
-
Algebraic periods and minimal number of periodic points for smooth self-maps of 1-connected 4-manifolds with definite intersection forms
PublikacjaLet M be a closed 1-connected smooth 4-manifolds, and let r be a non-negative integer. We study the problem of finding minimal number of r-periodic points in the smooth homotopy class of a given map f: M-->M. This task is related to determining a topological invariant D^4_r[f], defined in Graff and Jezierski (Forum Math 21(3):491–509, 2009), expressed in terms of Lefschetz numbers of iterations and local fixed point indices of...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 4 and homology groups with the sum of ranks less or equal to10
Dane BadawczeAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 4 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Estimates for minimal number of periodic points for smooth self-maps of simply-connected manifolds
Dane BadawczeWe consider a closed smooth connected and simply-connected manifold of dimension at least 4 and its self-map f. The topological invariant Dr[f] is equal to the minimal number of r-periodic points in the smooth homotopy class of f. We assume that r is odd and all coefficients b(k) of so-called periodic expansion of Lefschetz numbers of iterations are...
-
Minimal number of periodic points for smooth self-maps of simply-connected manifolds
Dane BadawczeThe problem of finding the minimal number of periodic points in a given class of self-maps of a space is one of the central questions in periodic point theory. We consider a closed smooth connected and simply-connected manifold of dimension at least 4 and its self-map f. The topological invariant D_r[f] is equal to the minimal number of r-periodic points...
-
Minimization of the number of periodic points for smooth self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers
PublikacjaLet f be a smooth self-map of m-dimensional, m ≥ 4, smooth closed connected and simply-connected manifold, r a fixed natural number. For the class of maps with periodic sequence of Lefschetz numbers of iterations the authors introduced in [Graff G., Kaczkowska A., Reducing the number of periodic points in smooth homotopy class of self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers, Ann. Polon. Math....
-
The Chow Ring of flag manifolds
Dane BadawczeSchubert calculus is the intersection theory of 19th century. Justifying this calculus is the content of the 15th problem of Hilbert. In the course to establish the foundation of algebraic geometry, Van der Vaerden and A. Weil attributed the problem to the determination of the chow ring of flag manifolds G/P, where G is a compact Lie group and P is...
-
Thermohydraulic maldistribution reduction in mini heat exchangers
PublikacjaA detailed numerical investigation has been carried out to analyze the flow maldistribution in 50 parallel 1 mm × 1 mm rectangular minichannels and 1 mm depth minigap section with rectangular, trapezoidal, triangular or concave manifolds in Z-type flow configuration. The working medium was ethanol and the mass flow rate was 5 × 10−4 kg/s. Both sections were heated from the bottom side. Heat flux of 10 000 W/m2 and 5000 W/m2 was...
-
Lefschetz periodic point free self-maps of compact manifolds
PublikacjaLet f be a self-map of a compact connected manifold M. We characterize Lefschetz periodic point free continuous self-maps of M for several classes of manifolds and generalize the results of Guirao and Llibre [J.L.G. Guirao, J. Llibre, On the Lefschetz periodic point free continuous self-maps on connected compact manifolds,
-
Lefschetz periodic point free self-maps of compact manifolds
PublikacjaLet f be a self-map of a compact connected manifold M. We characterize Lefschetz periodic point free continuous self-maps of M for several classes of manifolds and generalize the results of Guirao and Llibre [J.L.G. Guirao, J. Llibre, On the Lefschetz periodic point free continuous self-maps on connected compact manifolds, Topology Appl. 158 (16) (2011) 2165-2169].
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 6 and homology groups with the sum of ranks less or equal to10
Dane BadawczeAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 6 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 5 and homology groups with the sum of ranks less or equal to10
Dane BadawczeAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 5 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 8 and homology groups with the sum of ranks less or equal to 10
Dane BadawczeAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 8 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 7 and homology groups with the sum of ranks less or equal to10
Dane BadawczeAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 7 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points of smooth boundary-preserving self-maps of simply-connected manifolds
PublikacjaLet M be a smooth compact and simply-connected manifold with simply-connected boundary ∂M, r be a fixed odd natural number. We consider f, a C1 self-map of M, preserving ∂M . Under the assumption that the dimension of M is at least 4, we define an invariant Dr(f;M,∂M) that is equal to the minimal number of r-periodic points for all maps preserving ∂M and C1-homotopic to f. As an application, we give necessary and sufficient...
-
The Hopf theorem for gradient local vector fields on manifolds
PublikacjaWe prove the Hopf theorem for gradient local vector fields on manifolds, i.e., we show that there is a natural bijection between the set of gradient otopy classes of gradient local vector fields and the integers if the manifold is connected Riemannian without boundary.
-
Parseval Wavelet Frames on Riemannian Manifold
PublikacjaWe construct Parseval wavelet frames in L 2 (M) for a general Riemannian manifold M and we show the existence of wavelet unconditional frames in L p (M) for 1 < p < ∞. This is made possible thanks to smooth orthogonal projection decomposition of the identity operator on L 2 (M), which was recently proven by Bownik et al. (Potential Anal 54:41–94, 2021). We also show a characterization of Triebel–Lizorkin F sp,q (M) and Besov B...
-
An algorithmic approach to estimating the minimal number of periodic points for smooth self-maps of simply-connected manifolds
PublikacjaFor a given self-map f of M, a closed smooth connected and simply-connected manifold of dimension m 4, we provide an algorithm for estimating the values of the topological invariant D^m_r [f], which equals the minimal number of r-periodic points in the smooth homotopy class of f. Our results are based on the combinatorial scheme for computing D^m_r [f] introduced by G. Graff and J. Jezierski [J. Fixed Point Theory Appl. 13 (2013),...
-
Computations of the least number of periodic points of smooth boundary-preserving self-maps of simply-connected manifolds
PublikacjaLet $r$ be an odd natural number, $M$ a compact simply-connected smooth manifold, $\dim M\geq 4$, such that its boundary $\partial M$ is also simply-connected. We consider $f$, a $C^1$ self-maps of $M$, preserving $\partial M$. In [G. Graff and J. Jezierski, Geom. Dedicata 187 (2017), 241-258] the smooth Nielsen type periodic number $D_r(f;M,\partial M)$ was defined and proved to be equal to the minimal number of $r$-periodic points...
-
Combinatorial scheme of finding minimal number of periodic points for smooth self-maps of simply connected manifolds
PublikacjaLet M be a closed smooth connected and simply connected manifold of dimension m at least 3, and let r be a fixed natural number. The topological invariant D^m_r [f], defined by the authors in [Forum Math. 21 (2009), 491-509], is equal to the minimal number of r-periodic points in the smooth homotopy class of f, a given self-map of M. In this paper, we present a general combinatorial scheme of computing D^m_r [f] for arbitrary dimension...
-
Mitigation of the Flow Maldistribution in Minichannel and Minigap Heat Exchangers by Introducing Threshold in the Manifolds
PublikacjaIn the present paper, a detailed numerical investigation has been carried out to analyze the flow maldistribution in 50 parallel rectangular cross-section (1 mm depth and 1 mm width) minichannels and minigap section (1 mm depth and 99 mm width) with rectangular/trapezoidal manifolds in Z-type flow configuration. The author carried out numerical investigation with various mass flowrates, namely 0.05 kg/s, 0.1 kg/s and 0.2 kg/s which...
-
Harmonic Analysis
Dane BadawczeWe construct a decomposition of the identity operator on a Riemannian manifold M as a sum of smooth orthogonal projections subordinate to an open cover of M. This extends a decomposition on the real line by smooth orthogonal projection due to Coifman and Meyer (C. R. Acad. Sci. Paris, Sér. I Math., 312(3), 259–261 1991) and Auscher, Weiss, Wickerhauser...
-
Reducing the number of periodic points in the smooth homotopy class of a self-map of a simply-connected manifold with periodic sequence of Lefschetz numbers
PublikacjaLet f be a smooth self-map of an m-dimensional (m >3) closed connected and simply-connected manifold such that the sequence of the Lefschetz num- bers of its iterations is periodic. For a fixed natural r we wish to minimize, in the smooth homotopy class, the number of periodic points with periods less than or equal to r. The resulting number is given by a topological invariant J[f] which is defned in combinatorial terms and is...
-
The relative cup-length in local Morse cohomology
PublikacjaLocal Morse cohomology associates cohomology groups to isolating neighborhoods of gradient flows of Morse functions on (generally non-compact) Riemannian manifolds M. We show that local Morse cohomology is a module over the cohomology of the isolating neighborhood, which allows us to define a cup-length relative to the cohomology of the isolating neighborhood that gives a lower bound on the number of critical points of functions...
-
Multi-mode vibronic interactions in the five lowest electronic states of the fluorobenzene radical cation
PublikacjaThe multi-mode vibronic interactions between the five lowest electronic states of the fluorobenzene radical cation are investigated theoretically, based on ab initio electronic structure data, and employing the linear vibronic coupling model. Low-energy conical intersections, and strong vibronic couplings are found to prevail within the set of X-A and B-C-D cationic states, while the interactions between these two sets of states...
-
Wild oscillations in a nonlinear neuron model with resets: (II) Mixed-mode oscillations
PublikacjaThis work continues the analysis of complex dynamics in a class of bidimensional nonlinear hybrid dynamical systems with resets modeling neuronal voltage dynamics with adaptation and spike emission. We show that these models can generically display a form of mixed-mode oscillations (MMOs), which are trajectories featuring an alternation of small oscillations with spikes or bursts (multiple consecutive spikes). The mechanism by...
-
Flow distribution and heat transfer in minigap and minichannel heat exchangers during flow boiling
PublikacjaThe topic of boiling heat transfer in miniscale geometries has focused the ever increasing interest of researchers in recent years. However, most of the works are related to mini- and microchannels and much less to minigaps. Meanwhile, minigaps allow for more comprehensive experimental studies, i.e. flow visualisations due to the flat, two-dimensional configuration of the flow. The results of the experimental investigations of...