Filtry
wszystkich: 84
Wyniki wyszukiwania dla: CAPACITY THEOREM
-
Subadditivity of the minimum output entropy and superactivation of the classical capacity of quantum multiple access channels
PublikacjaWe study subadditivity of the minimum output entropy (Hmin) of quantum multiple access channels (MACs). We provide an example of violation of the additivity theorem for Hmin known in classical information theory. Our result is based on a fundamental property of MACs, i.e., independence of each sender. The channels used in the example can be constructed explicitly. On the basis of subadditivity of Hmin we also provide an example...
-
On symmetric extendibility of quantum states and its applications
PublikacjaThis dissertation is focused on analysis of the symmetric extendibility of quantum states and its applications in the quantum information theory, with special attention paid to the area of quantum entanglement distillation, quantum channels theory, quantum security, and monogamy of quantum entanglement in time. We analyze geometry of the set of symmetric extendible states, i.e. such states that possess symmetric extensions and...
-
A Measurable Selector in Kadison’s Carpenter’s Theorem
PublikacjaWe show the existence of a measurable selector in Carpenter’s Theorem due to Kadison. This solves a problem posed by Jasper and the first author in an earlier work. As an application we obtain a characterization of all possible spectral functions of shift-invariant subspaces of L 2 (R d ) and Carpenter’s Theorem for type I ∞ von Neumann algebras.
-
Functional delay fractional equations
PublikacjaIn this paper, we discuss functional delay fractional equations. A Banach fixed point theorem is applied to obtain the existence (uniqueness) theorem. We also discuss such problems when a delay argument has a form α(t) = αt, 0 < α < 1, by Rusing the method of successive approximations. Some existence results are also formulated in this case. An example illustrates the main result.
-
About the Noether’s theorem for fractional Lagrangian systems and a generalization of the classical Jost method of proof
PublikacjaRecently, the fractional Noether's theorem derived by G. Frederico and D.F.M. Torres in [10] was proved to be wrong by R.A.C. Ferreira and A.B. Malinowska in (see [7]) using a counterexample and doubts are stated about the validity of other Noether's type Theorem, in particular ([9],Theorem 32). However, the counterexample does not explain why and where the proof given in [10] does not work. In this paper, we make a detailed analysis...
-
A note on simple bifurcation of equilibrium forms of an elastic rod on a deformable foundation
PublikacjaWe study bifurcation of equilibrium states of an elastic rod on a two-parameter Winkler foundation. In the article "Bifurcation of equilibrium forms of an elastic rod on a two-parameter Winkler foundation" [Nonlinear Anal., Real World Appl. 39 (2018) 451-463] the existence of simple bifurcation points was proved by the use of the Crandall-Rabinowitz theorem. In this paper we want to present an alternative proof of this fact based...
-
Fundamental properties of solutions to fractional-order Maxwell's equations
PublikacjaIn this paper, fundamental properties of solutions to fractional-order (FO) Maxwell's equations are analysed. As a starting point, FO Maxwell's equations are introduced in both time and frequency domains. Then, we introduce and prove the fundamental properties of electromagnetic field in FO electromagnetics, i.e. energy conservation, uniqueness of solutions, and reciprocity. Furthermore, the algorithm of the plane wave simulation...
-
A note on a Wiener-Wintner theorem for mean ergodic Markov amenable semigroups
PublikacjaWe prove a Wiener-Wintner ergodic type theorem for a Markov representation of a right amenable semitopological semigroup.
-
The Maslov index and the spectral flow—revisited
PublikacjaWe give an elementary proof of a celebrated theorem of Cappell, Lee and Miller which relates the Maslov index of a pair of paths of Lagrangian subspaces to the spectral flow of an associated path of self-adjoint first-order operators. We particularly pay attention to the continuity of the latter path of operators, where we consider the gap-metric on the set of all closed operators on a Hilbert space. Finally, we obtain from Cappell,...
-
On the Peano Theorem for Some Functional Differential Equations on Time Scale
PublikacjaThe Peano Theorem for some functional differential equations on time scale is proved. Assumptions are of Caratheodory type. Two counter examples for false Peano theorems in the literature are presented.
-
A Hopf type theorem for equivariant local maps
PublikacjaWe study otopy classes of equivariant local maps and prove a Hopf type theorem for such maps in the case of a real finite-dimensional orthogonal representation of a compact Lie group.
-
Contra Bellum: Bell's Theorem as a Confusion of Languages
PublikacjaBell's theorem is a conflict of mathematical predictions formulated within an infinite hierarchy of mathematical models. Inequalities formulated at level k ∈ Z are violated by probabilities at level k+1. We are inclined to think that k=0 corresponds to the classical world, while k=1 — to the quantum one. However, as the k=0 inequalities are violated by k=1 probabilities, the same relation holds between k=1 inequalities violated...
-
Limits Theorems for Random Walks on Homeo(S1)
PublikacjaThe central limit theorem and law of the iterated logarithm for Markov chains corresponding to random walks on the space Homeo(S1) of circle homeomorphisms for centered Lipschitz functions and every starting point are proved.
-
ENERGY ANALYSIS OF THE PROPULSION SHAFT FATIGUE PROCESS IN A ROTATING MECHANICAL SYSTEM PART III DIMENSIONAL ANALYSIS
PublikacjaThis article presents the third and last part of the problem of diagnosing the fatigue of marine propulsion shafts in terms of energy with the use of the action function, undertaken by the authors. Even the most perfect physical models of real objects, observed under laboratory conditions and developed based on the results of their research, cannot be useful in diagnostics without properly transferring the obtained results to the...
-
Fractional equations of Volterra type involving a Riemann Liouville derivative
PublikacjaIn this paper, we discuss the existence of solutions of fractional equations of Volterra type with the Riemann Liouville derivative. Existence results are obtained by using a Banach fixed point theorem with weighted norms and by a monotone iterative method too. An example illustrates the results.
-
The Hopf theorem for gradient local vector fields on manifolds
PublikacjaWe prove the Hopf theorem for gradient local vector fields on manifolds, i.e., we show that there is a natural bijection between the set of gradient otopy classes of gradient local vector fields and the integers if the manifold is connected Riemannian without boundary.
-
Morse cohomology in a Hilbert space via the Conley index
PublikacjaThe main theorem of this paper states that Morse cohomology groups in a Hilbert space are isomorphic to the cohomological Conley index. It is also shown that calculating the cohomological Conley index does not require finite-dimensional approximations of the vector field. Further directions are discussed.
-
Partial hyperbolicity and central shadowing
PublikacjaWe study shadowing property for a partially hyperbolic diffeomor- phism f. It is proved that if f is dynamically coherent then any pseudotrajec- tory can be shadowed by a pseudotrajectory with “jumps” along the central foliation. The proof is based on the Tikhonov-Shauder fixed point theorem.
-
Comparative analysis of the theoretical models of ideal propulsor, ideal fluid brake, ideal screw propeller and ideal axial wind turbine
PublikacjaThe article presents a detailed discussion of four different fluid dynamics devices.These devices are presented with all relevant mathematical formulae regarding the forces, the power and the efficiency. It is demonstrated that application of the Betz theorem to axial wind turbines is not correct and it underestimates the maximujm achievable efficiency. This conclusion is supported by numerical calculations.
-
Positive solutions to boundary value problems for impulsive second-order differential equations
PublikacjaIn this paper, we discuss four-point boundary value problems for impulsive second-order differential equations. We apply the Krasnoselskii's fixed point theorem to obtain sufficient conditions under which the impulsive second-order differential equations have positive solutions. An example is added to illustrate theoretical results.
-
Periodic Solutions of Generalized Lagrangian Systems with Small Perturbations
PublikacjaIn this paper we study the generalized Lagrangian system with a small perturbation. We assume the main term in the system to have a maximum, but do not suppose any condition for perturbation term. Then we prove the existence of a periodic solution via Ekeland’s principle. Moreover, we prove a convergence theorem for periodic solutions of perturbed systems.
-
Module structure in Conley theory with some applications
PublikacjaA multiplicative structure in the cohomological versjon of Conley index is described . In the case of equivariant flows we apply the normalization procedure known from equivariant degree theory and we propose a new continuation invariant. The theory is then applied to obtain a mountain pass type theorem. Another application is a result on multiple bifurcations for some elliptic PDE.
-
Positive solutions to advanced fractional differential equations with nonlocal boundary conditions
PublikacjaWe study the existence of positive solutions for a class of higher order fractional differential equations with advanced arguments and boundary value problems involving Stieltjes integral conditions. The fixed point theorem due to Avery-Peterson is used to obtain sufficient conditions for the existence of multiple positive solutions. Certain of our results improve on recent work in the literature.
-
Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space
PublikacjaUsing the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.
-
Bifurcation of equilibrium forms of an elastic rod on a two-parameter Winkler foundation
PublikacjaWe consider two-parameter bifurcation of equilibrium states of an elastic rod on a deformable foundation. Our main theorem shows that bifurcation occurs if and only if the linearization of our problem has nontrivial solutions. In fact our proof, based on the concept of the Brouwer degree, gives more, namely that from each bifurcation point there branches off a continuum of solutions.
-
Positive solutions to Sturm–Liouville problems with non-local boundary conditions
PublikacjaIn this paper, the existence of at least three non-negative solutions to non-local boundary-value problems for second-order differential equations with deviating arguments α and ζ is investigated. Sufficient conditions, which guarantee the existence of positive solutions, are obtained using the Avery–Peterson theorem. We discuss our problem for both advanced and delayed arguments. An example is added to illustrate the results.
-
THE REPRESENTATION PROBLEM FOR A DIFFUSION EQUATION AND FRACTAL R-L LADDER NETWORKS
PublikacjaThe representation problem is to prove that a discretization in space of the Fourier transform of a diffusion equation with a constant diffusion coefficient can be realized explicitly by an infinite fractal R-L ladder networks. We prove a rigidity theorem: a solution to the representation problem exists if and only if the space discretization is a geometric space scale and the fractal ladder networks is a Oustaloup one. In this...
-
Positive solutions for second order impulsive differential equations involving Stieltjes integral conditions
PublikacjaIn this paper we investigate integral boundary value problems for fourth order differentialequations with deviating arguments.Wediscuss our problem both for advanced or delayedarguments. We establish sufficient conditions under which such problems have positivesolutions. To obtain the existence of multiple (at least three) positive solutions, we use afixed point theorem due to Avery and Peterson. An example is also included to...
-
An Analysis of Elliptical-Rectangular Patch Structure on Multilayer Elliptic Cylinders
PublikacjaThe resonance frequency problem of an ellipticalrectangular patch mounted on multilayered dielectric coated elliptic conducting cylinder, is investigated in this paper. A fullwave analysis and a moment-method calculation are employed. The analysis is carried out considering the expansion of the field as a series of Mathieu functions. An additional theorem for Mathieu functions is utilized to investigate the non-confocal ellipse...
-
On solvability of initial boundary-value problems of micropolar elastic shells with rigid inclusions
PublikacjaThe problem of dynamics of a linear micropolar shell with a finite set of rigid inclusions is considered. The equations of motion consist of the system of partial differential equations (PDEs) describing small deformations of an elastic shell and ordinary differential equations (ODEs) describing the motions of inclusions. Few types of the contact of the shell with inclusions are considered. The weak setup of the problem is formulated...
-
The Palais–Smale condition for the Hamiltonian action on a mixed regularity space of loops in cotangent bundles and applications
PublikacjaWe show that the Hamiltonian action satisfies the Palais-Smale condition over a “mixed regular- ity” space of loops in cotangent bundles, namely the space of loops with regularity H^s, s ∈ (1/2, 1), in the baseand H^{1−s} in the fiber direction. As an application, we give a simplified proof of a theorem of Hofer-Viterbo on the existence of closed characteristic leaves for certain contact type hypersufaces in cotangent bundles.
-
RNS/TCS CONVERTER DESIGN USING HIGH-LEVEL SYNTHESIS IN FPGA
PublikacjaAn experimental high-level synthesis (HLS) of the residue number system (RNS) to two’s-complement system (TCS) converter in the Vivado Xilinx FPGA environment is shown. The assumed approach makes use of the Chinese Remainder Theorem I (CRT I). The HLS simplifies and accelerates the design and implementation process, moreover the HLS synthesized architecture requires less hardware by about 20% but the operational frequency is smaller...
-
Fractional Problems with Right-Handed Riemann-Liouville Fractional Derivatives
PublikacjaIn this paper, we investigate the existence of solutions for advanced fractional differential equations containing the right-handed Riemann-Liouville fractional derivative both with nonlinear boundary conditions and also with initial conditions given at the end point T of interval [0,T ]. We use both the method of successive approximations, the Banach fixed point theorem and the monotone iterative technique, as well. Linear problems...
-
Arithmetic Loophole in Bell's Theorem: Overlooked Threat to Entangled-State Quantum Cryptography
PublikacjaBell’s theorem is supposed to exclude all local hidden-variable models of quantum correlations. However,an explicit counterexample shows that a new class of local realistic models, based on generalized arith-metic and calculus, can exactly reconstruct rotationally symmetric quantum probabilities typical oftwo-electron singlet states. Observable probabilities are consistent with the usual arithmetic employedby macroscopic observers...
-
No-local-broadcasting theorem for multipartite quantum correlations
PublikacjaWe prove that the correlations present in a multipartite quantum state have an operational quantum character even if the state is unentangled, as long as it does not simply encode a multipartite classical probability distribution. Said quantumness is revealed by the new task of local broadcasting, i.e., of locally sharing preestablished correlations, which is feasible if and only if correlations are stricly classical. Our operational...
-
Integrable zero-range potentials in a plane
PublikacjaWe examine general statements in the Wronskian representation of Darboux transformations for plane zero-range potentials. Such expressions naturally contain scattering problem solution. We also apply Abel theorem to Wronskians for differential equations and link it to chain equations for Darboux transforms to fix conditions for further development of the underlying distribution concept. Moutard transformations give a convenient...
-
A Loophole of All ‘Loophole-Free’ Bell-Type Theorems
PublikacjaBell’s theorem cannot be proved if complementary measurements have to be represented by random variables which cannot be added or multiplied. One such case occurs if their domains are not identical. The case more directly related to the Einstein–Rosen–Podolsky argument occurs if there exists an ‘element of reality’ but nevertheless addition of complementary results is impossible because they are represented by elements from different...
-
The equivariant spectral flow and bifurcation of periodic solutions of Hamiltonian systems
PublikacjaWe define a spectral flow for paths of selfadjoint Fredholm operators that are equivariant under the orthogonal action of a compact Lie group as an element of the representation ring of the latter. This G-equivariant spectral flow shares all common properties of the integer valued classical spectral flow, and it can be non-trivial even if the classical spectral flow vanishes. Our main theorem uses the G-equivariant spectral flow...
-
Discrete and continuous fractional persistence problems – the positivity property and applications
PublikacjaIn this article, we study the continuous and discrete fractional persistence problem which looks for the persistence of properties of a given classical (α=1) differential equation in the fractional case (here using fractional Caputo’s derivatives) and the numerical scheme which are associated (here with discrete Grünwald–Letnikov derivatives). Our main concerns are positivity, order preserving ,equilibrium points and stability...
-
Critical Remarks on Landauer’s principle of erasure– dissipation: Including notes on Maxwell demons and Szilard engines
PublikacjaWe briefly address Landauer’s Principle and some related issues in thermal demons. We show that an error-free Turing computer works in the zero-entropy limit, which proves Landauer’s derivation incorrect. To have a physical logic gate, memory or information-engine, a few essential components necessary for the operation of these devices are often neglected, such as various aspects of control, damping and the fluctuation–dissipation...
-
Asymptotic behaviour in the set of nonhomogeneous chains of stochastic operators
PublikacjaWe study different types of asymptotic behaviour in the set of (infinite dimensional) nonhomogeneous chains of stochastic operators acting on L1(μ) spaces. In order to examine its structure we consider different norm and strong operator topologies. To describe the nature of the set of nonhomogeneous chains of Markov operators with a particular limit behaviour we use the category theorem of Baire. We show that the geometric structure...
-
The cohomological span of LS-Conley index
PublikacjaIn this paper we introduce a new homotopy invariant – the cohomological span of LS-Conley index. We prove the theorems on the existence of critical points for a class of strongly indefinite functionals with the gradient of the form Lx+K(x), where L is bounded linear and K is completely continuous. We give examples of Hamiltonian systems for which our methods give better results than the Morse inequalities. We also give a formula...
-
Topological Behaviour of Solutions of Vibro-Impact Systems in the Neighborhood of Grazing
PublikacjaThe grazing bifurcation is considered for the Newtonian model of vibro-impact systems. A brief review on the conditions, sufficient for the existence of a grazing family of periodic solutions, is given. The properties of these periodic solutions are discussed. A plenty of results on the topological structure of attractors of vibro-impact systems is known. However, since the considered system is strongly nonlinear, these attractors...
-
Quasilinear elliptic problem in anisotropic Orlicz–Sobolev space on unbounded domain
PublikacjaWe study a quasilinear elliptic problem $-\text{div} (\nabla \Phi(\nabla u))+V(x)N'(u)=f(u)$ with anisotropic convex function $\Phi$ on the whole $\R^n$. To prove existence of a nontrivial weak solution we use the mountain pass theorem for a functional defined on anisotropic Orlicz-Sobolev space $\WLPhispace(\R^n)$. As the domain is unbounded we need to use Lions type lemma formulated for Young functions. Our assumptions broaden...
-
Positive solutions to fractional differential equations involving Stieltjes integral conditions
PublikacjaIn this paper, we investigate nonlocal boundary value problems for fractional differential equations with dependence on the first-order derivatives and deviating arguments. Sufficient conditions which guarantee the existence of at least three positive solutions are new and obtained by using the Avery–Peterson theorem. We discuss problems (1) and (2) when argument b can change the character on [0, 1], so in some subinterval I of...
-
Electromagnetic-based derivation of fractional-order circuit theory
PublikacjaIn this paper, foundations of the fractional-order circuit theory are revisited. Although many papers have been devoted to fractional-order modelling of electrical circuits, there are relatively few foundations for such an approach. Therefore, we derive fractional-order lumped-element equations for capacitors, inductors and resistors, as well as Kirchhoff’s voltage and current laws using quasi-static approximations of fractional-order...
-
Limiting distribution of Lempel Ziv'78 redundancy
PublikacjaWe show that the Lempel Ziv'78 redundancy rate tends to a Gaussian distribution for memoryless sources. We accomplish it by extending findings from our 1995 paper [3]. We present a new simplified proof of the Central Limit Theorem for the number of phrases in the LZ'78 algorithm. As in our 1995 paper, here we first analyze the asymptotic behavior of the total path length in a digital search tree (a DST) built from independent sequences....
-
On the Limiting distribution of Lempel Ziv'78 Redundancy for Memoryles Sources
PublikacjaWe show that the Lempel Ziv'78 redundancy rate tends to a Gaussian distribution for memoryless sources. We accomplish it by extending findings from our 1995 paper [3]. We present a new simplified proof of the Central Limit Theorem for the number of phrases in the LZ'78 algorithm. As in our 1995 paper, here we first analyze the asymptotic behavior of the total path length in a digital search tree (a DST) built from independent sequences....
-
Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator
PublikacjaUsing the Mountain Pass Theorem we show that the problem \begin{equation*} \begin{cases} \frac{d}{dt}\Lcal_v(t,u(t),\dot u(t))=\Lcal_x(t,u(t),\dot u(t))\quad \text{ for a.e. }t\in[a,b]\\ u(a)=u(b)=0 \end{cases} \end{equation*} has a solution in anisotropic Orlicz-Sobolev space. We consider Lagrangian $\Lcal=F(t,x,v)+V(t,x)+\langle f(t), x\rangle$ with growth conditions determined by anisotropic G-function and some geometric conditions...
-
Torsion of restrained thin-walled bars of open constant bisymmetric cross-section
PublikacjaElastic and geometric stiffness matrices were derived using Castigliano's first theorem, for the case of torsion of restrained thin-walled bars of open constant bisymmetric cross-section. Functions which describe the angles of torsion were adopted from the solutions of thedifferential equation for restrained torsion. The exact solutions were simplified by expanding them in a power series. Numerical examples were taken from Kujawa...