Wyniki wyszukiwania dla: CONTINUUM MECHANICS
-
CONTINUUM MECHANICS AND THERMODYNAMICS
Czasopisma -
Applications of Tensor Analysis in Continuum Mechanics
PublikacjaA tensor field is a tensor-valued function of position in space. The use of tensor fields allows us to present physical laws in a clear, compact form. A byproduct is a set of simple and clear rules for the representation of vector differential operators such as gradient, divergence, and Laplacian in curvilinear coordinate systems. The tensorial nature of a quantity permits us to formulate transformation rules for its components...
-
J. FE modelling of cracks in concrete elements within continuum mechanics.
PublikacjaW artykule przedstawiono wyniki symulacji rys zakrzywionych w elementach betonowych w warunkach mieszanego sposobu obciążenia. Symulacje wykonano przy zastosowaniu 3 różnych modeli: modelu sprężysto-plastycznego, modelu w ramach mechaniki zniszczeniowej i modelu z rysami obracającymi się.
-
FE-investigations on crack spacing in reinforced concrete beams within non-local continuum mechanics.
PublikacjaW artykule przedstawiono wyniki numerycznej analizy rozstawu rys w belkach żelbetowych przy zastosowaniu dwóch ciągłych modeli nielokalnych. Zbadano wpływ wielu różnych parametrów na rozstaw rys.
-
Thermal Buckling Analysis of Circular Bilayer Graphene sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics
PublikacjaIn this article, the thermal buckling behavior of orthotropic circular bilayer graphene sheets embedded in the Winkler–Pasternak elastic medium is scrutinized. Using the nonlocal elasticity theory, the bilayer graphene sheets are modeled as a nonlocal double–layered plate that contains small scale effects and van der Waals (vdW) interaction forces. The vdW interaction forces between the layers are simulated as a set of linear springs...
-
Extended micropolar approach within the framework of 3M theories and variations thereof
PublikacjaAs part of his groundbreaking work on generalized continuum mechanics, Eringen proposed what he called 3M theories, namely the concept of micromorphic, microstretch, and micropolar materials modeling. The micromorphic approach provides the most general framework for a continuum with translational and (internal) rotational degrees of freedom (DOF), whilst the rotational DOFs of micromorphic and micropolar continua are subjected...
-
Nonlinear resultant theory of shells accounting for thermodiffusion
PublikacjaThe complete nonlinear resultant 2D model of shell thermodiffusion is developed. All 2D balance laws and the entropy imbalance are formulated by direct through-the-thickness integration of respective 3D laws of continuum thermodiffusion. This leads to a more rich thermodynamic structure of our 2D model with several additional 2D fields not present in the 3D parent model. Constitutive equations of elastic thermodiffusive shells...
-
On existence and uniqueness of weak solutions for linear pantographic beam lattices models
PublikacjaIn this paper, we discuss well-posedness of the boundary-value problems arising in some “gradientincomplete” strain-gradient elasticity models, which appear in the study of homogenized models for a large class ofmetamaterials whosemicrostructures can be regarded as beam lattices constrained with internal pivots. We use the attribute “gradient-incomplete” strain-gradient elasticity for a model in which the considered strain energy...
-
Adaptation of the arbitrary Lagrange–Euler approach to fluid–solid interaction on an example of high velocity flow over thin platelet
PublikacjaThe aim of this study is to analyse the behaviour of a thin plate with air flow velocities of 0.3–0.9 Ma. Data from the experiment and numerical tools were used for the analysis. For fluid–solid interaction calculations, the arbitrary Lagrange–Euler approach was used. The results of the measurements are twofold. The first one is the measurement of the flow before and after vibrating plate, i.e. pure flow plate, and the second consists...
-
On the correspondence between two- and three-dimensional Eshelby tensors
PublikacjaWe consider both three-dimensional (3D) and two-dimensional (2D) Eshelby tensors known also as energy–momentum tensors or chemical potential tensors, which are introduced within the nonlinear elasticity and the resultant nonlinear shell theory, respectively. We demonstrate that 2D Eshelby tensor is introduced earlier directly using 2D constitutive equations of nonlinear shells and can be derived also using the throughthe-thickness...
-
Robust four-node elements based on Hu–Washizu principle for nonlinear analysis of Cosserat shells
PublikacjaMixed 4-node shell elements with the drilling rotation and Cosserat-type strain measures based onthe three-field Hu–Washizu principle are proposed. In the formulation, apart from displacement and rotationfields, both strain and stress resultant fields are treated as independent. The elements are derived in the frame-work of a general nonlinear 6-parameter shell theory dedicated to the analysis of multifold irregular shells.The...
-
A continual model of a damaged medium used for analyzing fatigue life of polycrystalline structural alloys under thermal–mechanical loading
PublikacjaThe main physical laws of thermal–plastic deformation and fatigue damage accumulation processes in polycrystalline structural alloys under various regimes of cyclic thermal–mechanical loading are considered. Within the framework of mechanics of damaged media, a mathematical model is developed that describes thermal–plastic deformation and fatigue damage accumulation processes under low-cycle loading. The model consists of three...
-
Sensitivity analysis of free torsional vibration frequencies of thin-walled laminated beams under axial load
PublikacjaThe paper addresses sensitivity analysis of free torsional vibration frequencies of thin-walled beams of bisymmetric open cross-section made of unidirectional fibre-reinforced laminate. The warping effect and the axial end load are taken into account. The consideration is based upon the classical theory of thin-walled beams of non-deformable cross-section. The first-order sensitivity variation of the frequencies is derived with...
-
On the effective properties of foams in the framework of the couple stress theory
PublikacjaIn the framework of the couple stress theory, we discuss the effective elastic properties of a metal open-cell foam. In this theory, we have the couple stress tensor, but the microrotations are fully described by displacements. To this end, we performed calculations for a representative volume element which give the matrices of elastic moduli relating stress and stress tensors with strain and microcurvature tensors.
-
On FEM analysis of Cosserat-type stiffened shells. Static and stability linear analysis
PublikacjaThe present research investigates the theory and numerical analysis of shells stiffened with beams in the framework based on the geometrically exact theories of shells and beams. Shell’s and beam’s kinematics are described by the Cosserat surface and the Cosserat rod respectively, which are consistent including deformation and strain measures. A FEM approximation of the virtual work principle leads to the conforming shell and beam...
-
Local buckling of composite channel columns
PublikacjaThe investigation concerns local buckling of compressed flanges of axially compressed composite channel columns. Cooperation of the member flange and web is taken into account here. The buckling mode of the member flange is defined by rotation angle a flange about the line of its connection with the web. The channel column under investigation is made of unidirectional fibre-reinforced laminate. Two approaches to member orthotropic...
-
Structural response of existing spatial truss roof construction based on Cosserat rod theory
PublikacjaPaper presents the application of the Cosserat rod theory and newly developed associated finite elements code as the tools that support in the expert-designing engineering practice. Mechanical principles of the 3D spatially curved rods, dynamics (statics) laws, principle of virtual work are discussed. Corresponding FEM approach with interpolation and accumulation techniques of state variables are shown that enable the formulation...
-
Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following
PublikacjaIn this paper, we demonstrate a method for self-organization and leader following of nonholonomic robotic swarm based on spring damper mesh. By self-organization of swarm robots we mean the emergence of order in a swarm as the result of interactions among the single robots. In other words the self-organization of swarm robots mimics some natural behavior of social animals like ants among others. The dynamics of two-wheel robot...
-
Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches
PublikacjaThis paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite...
-
Selected local stability problems of channel section flanges made of aluminium alloys
PublikacjaThe paper addresses the issue of local buckling of compressed flanges of cold-formed thin-walled channel columns and beams with nonstandard flanges composed of aluminium alloys. The material behaviour follows the Ramberg–Osgood law. It should be noted that the proposed solution may be also applied for other materials, for example: stainless steel, carbon steel. The paper is motivated by an increasing interest in nonstandard cold-formed...
-
Pantographic metamaterials: an example of mathematically driven design and of its technological challenges
PublikacjaIn this paper, we account for the research efforts that have been started, for some among us, already since 2003, and aimed to the design of a class of exotic architectured, optimized (meta) materials. At the first stage of these efforts, as it often happens, the research was based on the results of mathematical investigations. The problem to be solved was stated as follows: determine the material (micro)structure governed by those...
-
Bending analysis of functionally graded nanoplates based on a higher-order shear deformation theory using dynamic relaxation method
PublikacjaIn this paper, bending analysis of rectangular functionally graded (FG) nanoplates under a uniform transverse load has been considered based on the modified couple stress theory. Using Hamilton’s principle, governing equations are derived based on a higher-order shear deformation theory (HSDT). The set of coupled equations are solved using the dynamic relaxation (DR) method combined with finite difference (FD) discretization technique...
-
On thermal stability of piezo-flexomagnetic microbeams considering different temperature distributions
PublikacjaBy relying on the Euler–Bernoulli beam model and energy variational formula, we indicate critical temperature causes in the buckling of piezo-flexomagnetic microscale beams. The corresponding size-dependent approach is underlying as a second strain gradient theory. Small deformations of elastic solids are assessed, and the mathematical discussion is linear. Regardless of the pyromagnetic effects, the thermal loading of the thermal...
-
Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore–Gibson–Thompson approach
PublikacjaIn this investigation, a computational analysis is conducted to study a magneto-thermoelastic problem for an isotropic perfectly conducting half-space medium. The medium is subjected to a periodic heat flow in the presence of a continuous longitude magnetic field. Based on Moore–Gibson–Thompson equation, a new generalized model has been investigated to address the considered problem. The introduced model can be formulated by combining...
-
On nonlinear dilatational strain gradient elasticity
PublikacjaWe call nonlinear dilatational strain gradient elasticity the theory in which the specific class of dilatational second gradient continua is considered: those whose deformation energy depends, in an objective way, on the gradient of placement and on the gradient of the determinant of the gradient of placement. It is an interesting particular case of complete Toupin–Mindlin nonlinear strain gradient elasticity: indeed, in it, the...
-
Flexomagneticity in buckled shear deformable hard-magnetic soft structures
PublikacjaThis research work performs the first time exploring and addressing the flexomagnetic property in a shear deformable piezomagnetic structure. The strain gradient reveals flexomagneticity in a magnetization phenomenon of structures regardless of their atomic lattice is symmetrical or asymmetrical. It is assumed that a synchronous converse magnetization couples both piezomagnetic and flexomagnetic features into the material structure....
-
Thermal buckling of functionally graded piezomagnetic micro- and nanobeams presenting the flexomagnetic effect
PublikacjaGalerkin weighted residual method (GWRM) is applied and implemented to address the axial stability and bifurcation point of a functionally graded piezomagnetic structure containing flexomagneticity in a thermal environment. The continuum specimen involves an exponential mass distributed in a heterogeneous media with a constant square cross section. The physical neutral plane is investigated to postulate functionally graded material...
-
Cavity-expansion approximation for projectile impact and penetration into sand
PublikacjaA one-dimensional problem of a spherical cavity expanding at a constant velocity from zero initial radius in an infinite granular medium, which has the first-kind self-similar solution, is considered. We are solving this dynamic spherical cavity-expansion problem to model rigid spheres penetrating into a granular media. Elastic–plastic deformation of the granular media is described in a barotropic approximation, using the high-pressure...
-
Nonlinear free and forced vibrations of a dielectric elastomer-based microcantilever for atomic force microscopy
PublikacjaThe majority of atomic force microcode (AFM) probes work based on piezoelectric actuation. However, some undesirable phenomena such as creep and hysteresis may appear in the piezoelectric actuators that limit their applications. This paper proposes a novel AFM probe based on dielectric elastomer actuators (DEAs). The DE is modeled via the use of a hyperelastic Cosserat model. Size effects and geometric nonlinearity are included...
-
A model of damaged media used for describing the process of non-stationary creep and long-term strength of polycrystalline structural alloys
PublikacjaThe main laws of the processes of creep and long-term strength of polycrystalline structural alloys are considered. From the viewpoint of continuum damaged media (CDM), a mathematical model is developed that describes the processes of viscoplastic deformation and damage accumulation under creep. The problem of determining material parameters and scalar functions of the developed constitutive relations based on the results of specially...
-
Experimental study and numerical simulation of the dynamic penetration into dry clay
PublikacjaTests of dry clay were carried out in a uniaxial stress state using the experimental setup which implements the split Hopkinson pressure bar method. Based on the results of these experiments, the compressive strength of clay was determined as an important element of S.S. Grigoryan’s model of the soil medium. In addition, the parameters of this model are determined from the results of experiments using the modified Kolsky method...
-
Fluid–solid interaction on a thin platelet with high-velocity flow: vibration modelling and experiment
PublikacjaThe paper concerns the nonlinear behaviour of a thin platelet that is streamlined in an aerodynamic tunnel. The air velocity in the aerodynamic tunnel was at 858.9 km/h or 0.7 Ma (Ma—Mach number is a dimensionless quantity in fluid dynamics representing the ratio of flow velocity past a boundary to the local speed of sound). This experiment was numerically simulated using FSI (fluid–solid interaction) tools, namely the coupling...
-
Thermomagnetic behavior of a semiconductor material heated by pulsed excitation based on the fourth-order MGT photothermal model
PublikacjaThis article proposes a photothermal model to reveal the thermo-magneto-mechanical properties of semiconductor materials, including coupled diffusion equations for thermal conductivity, elasticity, and excess carrier density. The proposed model is developed to account for the optical heating that occurs through the semiconductor medium. The Moore–Gibson–Thompson (MGT) equation of the fourth-order serves as the theoretical framework...
-
Victor Eremeev prof. dr hab.
Osoby -
From fluid mechanics backgrounds to modern field theory
PublikacjaOur presentation keeps a historical line of reasoning, since we start from old concepts of fluid mechanics and finish on concepts of modern field theory. We want to show that some facts from the nature phenomena, which have firstly been discovered on the ground of fluid mechanics, were next incorporated into physics and later become the important pattern for whole mathematical physics. Especially, well-known continuum models, which...
-
SIMULATIONS OF FRACTURE IN CONCRETE BEAMS UNDER BENDING USING A CONTINUUM AND DISCRETE APPROACH
PublikacjaThe paper describes two-dimensional meso-scale results of fracture in notched concrete beams under bending. Concrete was modelled as a random heterogeneous 4-phase material composed of aggregate particles, cement matrix, interfacial transitional zones and air voids. Within continuum mechanics, the simulations were carried out with the finite element method based on a isotropic damage constitutive model enhanced by a characteristic...
-
Performance of isotropic constitutive laws in simulating failure mechanisms in scaled RC beams
PublikacjaResults of numerical calculations of reinforced concrete (RC) beams are presented. Based on experimental results on longitudinally reinforced specimens of different sizes and shapes are investigated. Four different continuum constitutive laws with isotropic softening are used: one defined within continuum damage mechanics, an elasto-plastic with the Rankine criterion in tension and the Drucker-Prager criterion in compression, a...
-
A coupled constitutive model for fracture in plain concrete based on continuum theory with non-local softening and eXtended Finite Element Method
PublikacjaThe paper presents a constitutive model for concrete which combines a continuous and discontinuous fracture description. In a continuum regime, two different constitutive laws were used. First, a plasticity model with a Rankine failure criterion and an associated fl ow rule was used. Second, a constitutive law based on isotropic damage mechanics was formulated. In order to capture the width of a localized zone and to obtain mesh-independent...
-
On Effective Bending Stiffness of a Laminate Nanoplate Considering Steigmann–Ogden Surface Elasticity
PublikacjaAs at the nanoscale the surface-to-volume ratio may be comparable with any characteristic length, while the material properties may essentially depend on surface/interface energy properties. In order to get effective material properties at the nanoscale, one can use various generalized models of continuum. In particular, within the framework of continuum mechanics, the surface elasticity is applied to the modelling of surface-related...
-
Ireneusz Kreja dr hab. inż.
OsobyAbsolwent klasy matematycznej I Liceum Ogólnokształcącego w Gdańsku im. Mikołaja Kopernika (1974). Absolwent Wydziału Budownictwa Lądowego Politechniki Gdańskiej (1979). Od 1979 pracuje na PG. W 1989 uzyskał doktorat (z wyróżnieniem), na Wydziale Budownictwa Lądowego, a w 2008 habilitował się (również z wyróżnieniem) na Wydziale Inżynierii Lądowej i Środowiska PG. Od 2011 jest profesorem PG. Na Politechnice Gdańskiej pełnił funkcje:...
-
Duhem and Natanson: Two Mathematical Approaches to Thermodynamics
PublikacjaIn this article, the previously unrecognized contributions of Pierre Duhem and Ladislavus Natanson in thermodynamics are shown. The mathematical remodelling of a few of their principal ideas is taken into consideration, despite being neglected in the literature. To emphasize these ideas in an appropriate epistemological order, it would be crucial to first revalue and reconstruct some underrepresented parts of the proceedings process...
-
Exact resultant equilibrium conditions in the non-linear theory of branching and self-intersecting shells
PublikacjaWe formulate the exact, resultant equilibrium conditions for the non-linear theory of branching and self-intersecting shells. The conditions are derived by performing direct through-the-thickness integration in the global equilibrium conditions of continuum mechanics. At each regular internal and boundary point of the base surface our exact, local equilibrium equations and dynamic boundary conditions are equivalent, as expected,...
-
Scalar and Vector acoustic fields and sources: a new look
PublikacjaA study of fundamental problems of the wavefields that are the reaction of fluid continuum on two kinds of primary actions in fluid, then on two kinds of elementary point sources, is presented in this paper, based on the assumption of the physical duality of linear fluid mechanics and the formal symmetry of mathematical description. The two fundamental wavefields generated in fluid by physical point sources are discussed in detail,...
-
On coertia and inertia in aspects of Natanson’s nonlinear extended thermodynamics
PublikacjaIn this article, the previously underrepresented contributions of Natanson to the field of thermodynamics have been presented. In order to identify a source of irreversibility at Nature, Natanson introduced the concept of Coertia, which is similar to inertia. Natanson’s Coertia is a fundamental property of space that is responsible for every irreversible phenomena in matter, as well as in the electromagnetic and gravitational fields....
-
Strongly anisotropic surface elasticity and antiplane surface waves
PublikacjaWithin the new model of surface elasticity, the propagation of anti-plane surface waves is discussed. For the proposed model, the surface strain energy depends on surface stretching and on changing of curvature along a preferred direction. From the continuum mechanics point of view, the model describes finite deformations of an elastic solid with an elastic membrane attached on its boundary reinforced by a family of aligned elastic...
-
A constitutive law for concrete with smooth transition from continuous into discontinuous cracks’ description
PublikacjaPaper presents a constitutive model for concrete that combines a continuous and discontinuous crack’s description to simulate the concrete under tensile dominated loads. In a continuum regime, two different constitutive laws were used. First, a plasticity model with the Rankine failure criterion and an associated flow rule was used. Second, a constitutive law based on isotropic damage mechanics was formulated. Both model alternatives...
-
Acceleration waves in the nonlinear micromorphic continuum
PublikacjaWithin the framework of the nonlinear elastic theory of micromorphic continua we derive the conditions for propagation of acceleration waves. An acceleration wave, also called a wave of weak discontinuity of order two, can be treated as a propagating nonmaterial surface across which the second derivatives of the placement vector and micro-distortion tensor may undergo jump discontinuities. Here we obtain the acoustic tensor for...
-
On time-dependent nonlinear dynamic response of micro-elastic solids
PublikacjaA new approach to the mechanical response of micro-mechanic problems is presented using the modified couple stress theory. This model captured micro-turns due to micro-particles' rotations which could be essential for microstructural materials and/or at small scales. In a micro media based on the small rotations, sub-particles can also turn except the whole domain rotation. However, this framework is competent for a static medium....
-
Continuum models for pantographic blocks with second gradient energies which are incomplete
PublikacjaWe postulate a deformation energy for describing the mechanical behavior of so called pantographic blocks, that is bodies constituted by stacking of layers of pantographic sheets. We remark that the pantographic effect is limited in the plane of pantographic sheets and therefore only the second derivatives of transverse displacements along the pantographic fibers appear in the chosen deformation energy. We use this novel energy...
-
Nonlocal Models of Plates and Shells with Applications in Micro- and Nanomechanics
PublikacjaNowadays, the use of small-scale structures in micro/nanomachines has become more and more widespread. The most important applications of such small-sized parts are in micro-electro-mechanical systems (MEMS) as well as nano-electro-mechanical systems (NEMS) as actuators, sensors, energy harvesters. For example, nanosensors are nanoscale devices that measure physical quantities and convert these to signals that can be detected and...