Wyniki wyszukiwania dla: GPU
-
Finite element matrix generation on a GPU
PublikacjaThis paper presents an efficient technique for fast generation of sparse systems of linear equations arising in computational electromagnetics in a finite element method using higher order elements. The proposed approach employs a graphics processing unit (GPU) for both numerical integration and matrix assembly. The performance results obtained on a test platform consisting of a Fermi GPU (1x Tesla C2075) and a CPU (2x twelve-core...
-
Tuning matrix-vector multiplication on GPU
PublikacjaA matrix times vector multiplication (matvec) is a cornerstone operation in iterative methods of solving large sparse systems of equations such as the conjugate gradients method (cg), the minimal residual method (minres), the generalized residual method (gmres) and exerts an influence on overall performance of those methods. An implementation of matvec is particularly demanding when one executes computations on a GPU (Graphics...
-
GPU-accelerated finite element method
PublikacjaIn this paper the results of the acceleration of computations involved in analysing electromagnetic problems by means of the finite element method (FEM), obtained with graphics processors (GPU), are presented. A 4.7-fold acceleration was achieved thanks to the massive parallelization of the most time-consuming steps of FEM, namely finite-element matrix-generation and the solution of a sparse system of linear equations with the...
-
Dynamic GPU power capping with online performance tracing for energy efficient GPU computing using DEPO tool
PublikacjaGPU accelerators have become essential to the recent advance in computational power of high- performance computing (HPC) systems. Current HPC systems’ reaching an approximately 20–30 mega-watt power demand has resulted in increasing CO2 emissions, energy costs and necessitate increasingly complex cooling systems. This is a very real challenge. To address this, new mechanisms of software power control could be employed. In this...
-
Modelling and simulation of GPU processing in the MERPSYS environment
PublikacjaIn this work, we evaluate an analytical GPU performance model based on Little's law, that expresses the kernel execution time in terms of latency bound, throughput bound, and achieved occupancy. We then combine it with the results of several research papers, introduce equations for data transfer time estimation, and finally incorporate it into the MERPSYS framework, which is a general-purpose simulator for parallel and distributed...
-
Performance evaluation of parallel background subtraction on GPU platforms
PublikacjaImplementation of the background subtraction algorithm on parallel GPUs is presented. The algorithm processes video streams and extracts foreground pixels. The work focuses on optimizing parallel algorithm implementation by taking into account specific features of the GPU architecture, such as memory access, data transfers and work group organization. The algorithm is implemented in both OpenCL and CUDA. Various optimizations of...
-
A memory efficient and fast sparse matrix vector product on a Gpu
PublikacjaThis paper proposes a new sparse matrix storage format which allows an efficient implementation of a sparse matrix vector product on a Fermi Graphics Processing Unit (GPU). Unlike previous formats it has both low memory footprint and good throughput. The new format, which we call Sliced ELLR-T has been designed specifically for accelerating the iterative solution of a large sparse and complex-valued system of linear equations arising...
-
Acceleration of the DGF-FDTD method on GPU using the CUDA technology
PublikacjaWe present a parallel implementation of the discrete Green's function formulation of the finite-difference time-domain (DGF-FDTD) method on a graphics processing unit (GPU). The compute unified device architecture (CUDA) parallel computing platform is applied in the developed implementation. For the sake of example, arrays of Yagi-Uda antennas were simulated with the use of DGF-FDTD on GPU. The efficiency of parallel computations...
-
Parallelization of large vector similarity computations in a hybrid CPU+GPU environment
PublikacjaThe paper presents design, implementation and tuning of a hybrid parallel OpenMP+CUDA code for computation of similarity between pairs of a large number of multidimensional vectors. The problem has a wide range of applications, and consequently its optimization is of high importance, especially on currently widespread hybrid CPU+GPU systems targeted in the paper. The following are presented and tested for computation of all vector...
-
Parallel implementation of the DGF-FDTD method on GPU Using the CUDA technology
PublikacjaThe discrete Green's function (DGF) formulation of the finite-difference time-domain method (FDTD) is accelerated on a graphics processing unit (GPU) by means of the Compute Unified Device Architecture (CUDA) technology. In the developed implementation of the DGF-FDTD method, a new analytic expression for dyadic DGF derived based on scalar DGF is employed in computations. The DGF-FDTD method on GPU returns solutions that are compatible...
-
Parallel Background Subtraction in Video Streams Using OpenCL on GPU Platforms
PublikacjaImplementation of the background subtraction algorithm using OpenCL platform is presented. The algorithm processes live stream of video frames from the surveillance camera in on-line mode. Processing is performed using a host machine and a parallel computing device. The work focuses on optimizing an OpenCL algorithm implementation for GPU devices by taking into account specific features of the GPU architecture, such as memory access,...
-
Runtime Visualization of Application Progress and Monitoring of a GPU-enabled Parallel Environment
PublikacjaThe paper presents design, implementation and real life uses of a visualization subsystem for a distributed framework for parallelization of workflow-based computations among clusters with nodes that feature both CPUs and GPUs. Firstly, the proposed system presents a graphical view of the infrastructure with clusters, nodes and compute devices along with parameters and runtime graphs of load, memory available, fan speeds etc. Secondly,...
-
TensorHive: Management of Exclusive GPU Access for Distributed Machine Learning Workloads
PublikacjaTensorHive is a tool for organizing work of research and engineering teams that use servers with GPUs for machine learning workloads. In a comprehensive web interface, it supports reservation of GPUs for exclusive usage, hardware monitoring, as well as configuring, executing and queuing distributed computational jobs. Focusing on easy installation and simple configuration, the tool automatically detects the available computing...
-
Accuracy, Memory and Speed Strategies in GPU-based Finite-Element Matrix-Generation
PublikacjaThis paper presents strategies on how to optimize GPU-based finite-element matrix-generation that occurs in the finite-element method (FEM) using higher order curvilinear elements. The goal of the optimization is to increase the speed of evaluation and assembly of large finite-element matrices on a single GPU (Graphics Processing Unit) while maintaining the accuracy of numerical integration at the desired level. For this reason,...
-
GPU based implementation of Temperature-Vegetation Dryness Index for AVHRR3 Satellite Data
PublikacjaPaper presents an implementation of TVDI (Temperature-Vegetation-Dryness Index) algorithm on GPU (Graphics Processing Unit). Calculation of this index is based on LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index). Discussed results are based on multi-spectral imagery retrieved from AVHRR3 sensors for area of Poland. All phases of TVDI implementation on GPU are modified in respect to CUDA platform....
-
A Task-Scheduling Approach for Efficient Sparse Symmetric Matrix-Vector Multiplication on a GPU
PublikacjaIn this paper, a task-scheduling approach to efficiently calculating sparse symmetric matrix-vector products and designed to run on Graphics Processing Units (GPUs) is presented. The main premise is that, for many sparse symmetric matrices occurring in common applications, it is possible to obtain significant reductions in memory usage and improvements in performance when the matrix is prepared in certain ways prior to computation....
-
GPU Acceleration of Multilevel Solvers for Analysis of Microwave Components With Finite Element Method
PublikacjaThe letter discusses a fast implementation of the conjugate gradient iterative method with ${rm E}$-field multilevel preconditioner applied to solving real symmetric and sparse systems obtained with vector finite element method. In order to accelerate computations, a graphics processing unit (GPU) was used and significant speed-up (2.61 fold) was achieved comparing to a central processing unit (CPU) based approach. These results...
-
GPU-Accelerated 3D Mesh Deformation for Optimization Based on the Finite Element Method
PublikacjaThis paper discusses a strategy for speeding up the mesh deformation process in the design-byoptimization of high-frequency components involving electromagnetic field simulations using the 3D finite element method (FEM). The mesh deformation is assumed to be described by a linear elasticity model of a rigid body; therefore, each time the shape of the device is changed, an auxiliary elasticity finite-element problem must be solved....
-
Implementation of FDTD-compatible Green's function on heterogeneous CPU-GPU parallel processing system
PublikacjaThis paper presents an implementation of the FDTD-compatible Green's function on a heterogeneous parallel processing system. The developed implementation simultaneously utilizes computational power of the central processing unit (CPU) and the graphics processing unit (GPU) to the computational tasks best suited to each architecture. Recently, closed-form expression for this discrete Green's function (DGF) was derived, which facilitates...
-
Block Conjugate Gradient Method with Multilevel Preconditioning and GPU Acceleration for FEM Problems in Electromagnetics
PublikacjaIn this paper a GPU-accelerated block conjugate gradient solver with multilevel preconditioning is presented for solving large system of sparse equations with multiple right hand-sides (RHSs) which arise in the finite-element analysis of electromagnetic problems. We demonstrate that blocking reduces the time to solution significantly and allows for better utilization of the computing power of GPUs, especially when the system matrix...
-
Performance Evaluation of Selected Parallel Object Detection and Tracking Algorithms on an Embedded GPU Platform
PublikacjaPerformance evaluation of selected complex video processing algorithms, implemented on a parallel, embedded GPU platform Tegra X1, is presented. Three algorithms were chosen for evaluation: a GMM-based object detection algorithm, a particle filter tracking algorithm and an optical flow based algorithm devoted to people counting in a crowd flow. The choice of these algorithms was based on their computational complexity and parallel...
-
Implementation of algebraic procedures on the GPU using CUDA architecture on the example of generalized eigenvalue problem
Publikacja -
Performance and Energy Aware Training of a Deep Neural Network in a Multi-GPU Environment with Power Capping
PublikacjaIn this paper we demonstrate that it is possible to obtain considerable improvement of performance and energy aware metrics for training of deep neural networks using a modern parallel multi-GPU system, by enforcing selected, non-default power caps on the GPUs. We measure the power and energy consumption of the whole node using a professional, certified hardware power meter. For a high performance workstation with 8 GPUs, we were...
-
Communication and Load Balancing Optimization for Finite Element Electromagnetic Simulations Using Multi-GPU Workstation
PublikacjaThis paper considers a method for accelerating finite-element simulations of electromagnetic problems on a workstation using graphics processing units (GPUs). The focus is on finite-element formulations using higher order elements and tetrahedral meshes that lead to sparse matrices too large to be dealt with on a typical workstation using direct methods. We discuss the problem of rapid matrix generation and assembly, as well as...
-
A multithreaded CUDA and OpenMP based power‐aware programming framework for multi‐node GPU systems
PublikacjaIn the paper, we have proposed a framework that allows programming a parallel application for a multi-node system, with one or more GPUs per node, using an OpenMP+extended CUDA API. OpenMP is used for launching threads responsible for management of particular GPUs and extended CUDA calls allow to manage CUDA objects, data and launch kernels. The framework hides inter-node MPI communication from the programmer who can benefit from...
-
Jacobi and gauss-seidel preconditioned complex conjugate gradient method with GPU acceleration for finite element method
PublikacjaIn this paper two implementations of iterative solvers for solving complex symmetric and sparse systems resulting from finite element method applied to wave equation are discussed. The problem under investigation is a dielectric resonator antenna (DRA) discretized by FEM with vector elements of the second order (LT/QN). The solvers use the preconditioned conjugate gradient (pcg) method implemented on Graphics Processing Unit (GPU)...
-
GPU-Accelerated Finite-Element Matrix Generation for Lossless, Lossy, and Tensor Media [EM Programmer's Notebook]
PublikacjaThis paper presents an optimization approach for limiting memory requirements and enhancing the performance of GPU-accelerated finite-element matrix generation applied in the implementation of the higher-order finite-element method (FEM). It emphasizes the details of the implementation of the matrix-generation algorithm for the simulation of electromagnetic wave propagation in lossless, lossy, and tensor media. Moreover, the impact...
-
Efficient parallel implementation of crowd simulation using a hybrid CPU+GPU high performance computing system
PublikacjaIn the paper we present a modern efficient parallel OpenMP+CUDA implementation of crowd simulation for hybrid CPU+GPU systems and demonstrate its higher performance over CPU-only and GPU-only implementations for several problem sizes including 10 000, 50 000, 100 000, 500 000 and 1 000 000 agents. We show how performance varies for various tile sizes and what CPU–GPU load balancing settings shall be preferred for various domain...
-
Investigation of Parallel Data Processing Using Hybrid High Performance CPU + GPU Systems and CUDA Streams
PublikacjaThe paper investigates parallel data processing in a hybrid CPU+GPU(s) system using multiple CUDA streams for overlapping communication and computations. This is crucial for efficient processing of data, in particular incoming data stream processing that would naturally be forwarded using multiple CUDA streams to GPUs. Performance is evaluated for various compute time to host-device communication time ratios, numbers of CUDA streams,...
-
UNRES-GPU for Physics-Based Coarse-Grained Simulations of Protein Systems at Biological Time- and Size-Scales
PublikacjaThe dynamics of the virus like particles (VLPs) corresponding to the GII.4 Houston, GII.2 SMV, and GI.1 Norwalk strains of human noroviruses (HuNoV) that cause gastroenteritis was investigated by means of long-time (about 30 μs in the laboratory timescale) molecular dynamics simulations with the coarse-grained UNRES force field. The main motion of VLP units turned out to be the bending at the junction between the P1 subdomain (that...
-
Auto-tuning methodology for configuration and application parameters of hybrid CPU + GPU parallel systems based on expert knowledge
PublikacjaAuto-tuning of configuration and application param- eters allows to achieve significant performance gains in many contemporary compute-intensive applications. Feasible search spaces of parameters tend to become too big to allow for exhaustive search in the auto-tuning process. Expert knowledge about the utilized computing systems becomes useful to prune the search space and new methodologies are needed in the face of emerging heterogeneous...
-
GPU Power Capping for Energy-Performance Trade-Offs in Training of Deep Convolutional Neural Networks for Image Recognition
PublikacjaIn the paper we present performance-energy trade-off investigation of training Deep Convolutional Neural Networks for image recognition. Several representative and widely adopted network models, such as Alexnet, VGG-19, Inception V3, Inception V4, Resnet50 and Resnet152 were tested using systems with Nvidia Quadro RTX 6000 as well as Nvidia V100 GPUs. Using GPU power capping we found other than default configurations minimizing...
-
A GPU Solver for Sparse Generalized Eigenvalue Problems with Symmetric Complex-Valued Matrices Obtained Using Higher-Order FEM
PublikacjaThe paper discusses a fast implementation of the stabilized locally optimal block preconditioned conjugate gradient (sLOBPCG) method, using a hierarchical multilevel preconditioner to solve nonHermitian sparse generalized eigenvalue problems with large symmetric complex-valued matrices obtained using the higher-order finite-element method (FEM), applied to the analysis of a microwave resonator. The resonant frequencies of the low-order...
-
Tuning a Hybrid GPU-CPU V-Cycle Multilevel Preconditioner for Solving Large Real and Complex Systems of FEM Equations
PublikacjaThis letter presents techniques for tuning an accelerated preconditioned conjugate gradient solver with a multilevel preconditioner. The solver is optimized for a fast solution of sparse systems of equations arising in computational electromagnetics in a finite element method using higher-order elements. The goal of the tuning is to increase the throughput while at the same time reducing the memory requirements in order to allow...
-
GPU-Accelerated LOBPCG Method with Inexact Null-Space Filtering for Solving Generalized Eigenvalue Problems in Computational Electromagnetics Analysis with Higher-Order FEM
PublikacjaThis paper presents a GPU-accelerated implementation of the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) method with an inexact nullspace filtering approach to find eigenvalues in electromagnetics analysis with higherorder FEM. The performance of the proposed approach is verified using the Kepler (Tesla K40c) graphics accelerator, and is compared to the performance of the implementation based on functions from...
-
Single and Dual-GPU Generalized Sparse Eigenvalue Solvers for Finding a Few Low-Order Resonances of a Microwave Cavity Using the Finite-Element Method
PublikacjaThis paper presents two fast generalized eigenvalue solvers for sparse symmetric matrices that arise when electromagnetic cavity resonances are investigated using the higher-order finite element method (FEM). To find a few loworder resonances, the locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm with null-space deflation is applied. The computations are expedited by using one or two graphical processing...
-
Using GPUs for Parallel Stencil Computations in Relativistic Hydrodynamic Simulation
PublikacjaThis paper explores the possibilities of using a GPU for complex 3D finite difference computation. We propose a new approach to this topic using surface memory and compare it with 3D stencil computations carried out via shared memory, which is currently considered to be the best approach. The case study was performed for the extensive computation of collisions between heavy nuclei in terms of relativistic hydrodynamics.
-
Quality of Cryptocurrency Mining on Previous Generation NVIDIA GTX GPUs
PublikacjaCurrently, there is a lot of previous generation NVIDIA GTX graphical processing units (GPUs) available on the market, which were ousted from by next-gen RTX units. Due to this fact, numerous fully-operational devices remain underused, which are available at an affordable price. First, this paper presents an analysis of the cryptocurrency market. Next, in this context, the results of research on the performance of NVIDIA graphics...
-
Benchmarking overlapping communication and computations with multiple streams for modern GPUs
PublikacjaThe paper presents benchmarking a multi-stream application processing a set of input data arrays. Tests have been performed and execution times measured for various numbers of streams and various compute intensities measured as the ratio of kernel compute time and data transfer time. As such, the application and benchmarking is representative of frequently used operations such as vector weighted sum, matrix multiplication etc....
-
Performance/energy aware optimization of parallel applications on GPUs under power capping
PublikacjaIn the paper we present an approach and results from application of the modern power capping mechanism available for NVIDIA GPUs to the bench- marks such as NAS Parallel Benchmarks BT, SP and LU as well as cublasgemm- benchmark which are widely used for assessment of high performance computing systems’ performance. Specifically, depending on the benchmarks, various power cap configurations are best for desired trade-off of performance...
-
Modelowanie wydajności, niezawodności i zużycia energii wilopoziomowych systemów równoległych wielkiej skali z uwzględnieniem CPU oraz GPU
ProjektyProjekt realizowany w Wydział Elektroniki, Telekomunikacji i Informatyki zgodnie z porozumieniem UMO-2012/07/B/ST6/01516 z dnia 2013-07-17
-
Optimization of Execution Time under Power Consumption Constraints in a Heterogeneous Parallel System with GPUs and CPUs
PublikacjaThe paper proposes an approach for parallelization of computations across a collection of clusters with heterogeneous nodes with both GPUs and CPUs. The proposed system partitions input data into chunks and assigns to par- ticular devices for processing using OpenCL kernels defined by the user. The sys- tem is able to minimize the execution time of the application while maintaining the power consumption of the utilized GPUs and...
-
Food Classification from Images Using a Neural Network Based Approach with NVIDIA Volta and Pascal GPUs
PublikacjaIn the paper we investigate the problem of food classification from images, for the Food-101 dataset extended with 31 additional food classes from Polish cuisine. We adopted transfer learning and firstly measured training times for models such as MobileNet, MobileNetV2, ResNet50, ResNet50V2, ResNet101, ResNet101V2, InceptionV3, InceptionResNetV2, Xception, NasNetMobile and DenseNet, for systems with NVIDIA Tesla V100 (Volta) and...
-
KernelHive: a new workflow-based framework for multilevel high performance computing using clusters and workstations with CPUs and GPUs
PublikacjaThe paper presents a new open-source framework called KernelHive for multilevel parallelization of computations among various clusters, cluster nodes, and finally, among both CPUs and GPUs for a particular application. An application is modeled as an acyclic directed graph with a possibility to run nodes in parallel and automatic expansion of nodes (called node unrolling) depending on the number of computation units available....
-
Performance evaluation of Unified Memory with prefetching and oversubscription for selected parallel CUDA applications on NVIDIA Pascal and Volta GPUs
PublikacjaThe paper presents assessment of Unified Memory performance with data prefetching and memory oversubscription. Several versions of code are used with: standard memory management, standard Unified Memory and optimized Unified Memory with programmer-assisted data prefetching. Evaluation of execution times is provided for four applications: Sobel and image rotation filters, stream image processing and computational fluid dynamic simulation,...
-
Preconditioners with Low Memory Requirements for Higher-Order Finite-Element Method Applied to Solving Maxwell’s Equations on Multicore CPUs and GPUs
PublikacjaThis paper discusses two fast implementations of the conjugate gradient iterative method using a hierarchical multilevel preconditioner to solve the complex-valued, sparse systems obtained using the higher order finite-element method applied to the solution of the time-harmonic Maxwell equations. In the first implementation, denoted PCG-V, a classical V-cycle is applied and the system of equations on the lowest level is solved...
-
Paweł Czarnul dr hab. inż.
OsobyPaweł Czarnul uzyskał stopień doktora habilitowanego w dziedzinie nauk technicznych w dyscyplinie informatyka w roku 2015 zaś stopień doktora nauk technicznych w zakresie informatyki(z wyróżnieniem) nadany przez Radę Wydziału Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej w roku 2003. Dziedziny jego zainteresowań obejmują: przetwarzanie równoległei rozproszone w tym programowanie równoległe na klastrach obliczeniowych,...
-
Implementation of TVDI calculation for coastal zone
PublikacjaPaper will show an implementation of TVDI (Temperature-Vegetation-Dryness Index) algorithm on GPU (Graphics Processing Unit). Calculation of this index is based on LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index). Discussed results are based on multi-spectral imagery retrieved from AVHRR3 sensors for area of Poland, especially from region of Gdańsk coastal zone. All phases of TVDI implementation...
-
How to render FDTD computations more effective using agraphics accelerator.
PublikacjaGraphics processing units (GPUs) for years have been dedicated mostly to real time rendering. Recently leading GPU manufactures have extended their research area and decided to support also graphics computing. In this paper, we describe an impact of new GPU features on development process of an efficient finite difference time domain (FDTD) implementation.
-
Performance evaluation of the parallel object tracking algorithm employing the particle filter
PublikacjaAn algorithm based on particle filters is employed to track moving objects in video streams from fixed and non-fixed cameras. Particle weighting is based on color histograms computed in the iHLS color space. Particle computations are parallelized with CUDA framework. The algorithm was tested on various GPU devices: a desktop GPU card, a mobile chipset and two embedded GPU platforms. The processing speed depending on the number...