Filtry
wszystkich: 13
Wyniki wyszukiwania dla: MAGNETIC PROPERTY
-
Recent advances on magnetic carbon-related materials in advanced oxidation processes of emerging pollutants degradation
PublikacjaRecently, carbon-related materials have been proposed to improve the charge separation of the photogenerated carriers in the semiconductor matrices’ and surface properties. Carbon-related materials may act as co-catalysts, enhancing the pollutants adsorption on the surface, improving the charge carriers separation and photocatalyst stability and providing more active centres for photocatalytic reactions. This review summarizes...
-
Magnetic semiconductor photocatalysts for the degradation of recalcitrant chemicals from flow back water
PublikacjaIn the present study treatability of persistent organic compounds from the flow back water after hydrauling fracturing was investigated. The combination of TiO2 photocatalyst and magnetic oxide nanoparticles enhance the separation and recoverable property of nanosized TiO2 photocatalyst. Fe3O4/ TiO2 and Fe3O4@SiO2/TiO2 nanocomposites were prepared by heteroagglomeration. The photocatalysts’ characteristics by X-ray diffractometry...
-
Ferromagnetism and structural phase transition in rhombohedral PrIr3
PublikacjaThe synthesis, structural, magnetic, thermal, and transport properties are reported for polycrystalline PrIr3. At room temperature PrIr3 displays the rhombohedral space group R-3m and a PuNi3-type structure. At around 70 K a phase transition to a monoclinic C2/m structure is observed and continued cooling reveals temperature independent behavior of the unit cell volume. Further, PrIr3 undergoes a paramagnetic to ferromagnetic transition with...
-
Ln2(SeO3)2(SO4)(H2O)2 (Ln=Sm, Dy, Yb): A Mixed‐Ligand Pathway to New Lanthanide(III) Multifunctional Materials Featuring Nonlinear Optical and Magnetic Anisotropy Properties
PublikacjaBottom-up assembly of optically nonlinear and magnetically anisotropic lanthanide materials involving precisely placed spin carriers and optimized metal-ligand coordination offers a potential route to developing electronic architectures for coherent radiation generation and spin-based technologies, but the chemical design historically has been extremely hard to achieve. To address this, we developed a worthwhile avenue for creating...
-
Investigating Layered Topological Magnetic Materials as Efficient Electrocatalysts for the Hydrogen Evolution Reaction under High Current Densities
PublikacjaDespite considerable progress, high-performing durable catalysts operating under large current densities (i.e., >1000 mA/cm2) are still lacking. To discover platinum group metal-free (PGMfree) electrocatalysts for sustainable energy, our research involves investigating layered topological magnetic materials (semiconducting ferromagnets) as highly efficient electrocatalysts for the hydrogen evolution reaction under high current...
-
Effect of Axial Porosities on Flexomagnetic Response of In-Plane Compressed Piezomagnetic Nanobeams
PublikacjaWe investigated the stability of an axially loaded Euler–Bernoulli porous nanobeam considering the flexomagnetic material properties. The flexomagneticity relates to the magnetization with strain gradients. Here we assume both piezomagnetic and flexomagnetic phenomena are coupled simultaneously with elastic relations in an inverse magnetization. Similar to flexoelectricity, the flexomagneticity is a size-dependent property. Therefore,...
-
Novel MNZ-type microwave sensor for testing magnetodielectric materials
PublikacjaA novel microwave sensor with the mu-near-zero (MNZ) property is proposed for testing magnetodielectric material at 4.5 GHz. The sensor has a double-layer design consisting of a microstrip line and a metal strip with vias on layers 1 and 2, respectively. The proposed sensor can detect a unit change in relative permittivity and relative permeability with a difference in the operating frequency of 45 MHz and 78 MHz, respectively....
-
Superconductivity in CaBi2
PublikacjaSuperconductivity is observed with critical temperature Tc = 2.0 K in self-flux-grown single crystals of CaBi2. This material adopts the ZrSi2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at Tc is DC/gTc = 1.41, confirming bulk superconductivity;...
-
Edge-Guided Mode Performance and Applications in Nonreciprocal Millimeter-Wave Gyroelectric Components
PublikacjaThe analogies between the behavior of gyromagnetic and gyroelectric nonreciprocal structures, the use of the simple transfer matrix approach, and the edge-guided (EG) wave property, supported in a parallel plate model for integrated magnetized semiconductor waveguide, are investigated in those frequency regions, where the effective permittivity is negative or positive. As with their ferrite counterparts, the leakage of the EG waves...
-
TaRh 2 B 2 and NbRh 2 B 2 : Superconductors with a chiral noncentrosymmetric crystal structure
PublikacjaIt is a fundamental truth in solid compounds that the physical properties follow the symmetry of the crystal structure. Nowhere is the effect of symmetry more pronounced than in the electronic and magnetic properties of materials—even the projection of the bulk crystal symmetry onto different crystal faces is known to have a substantial impact on the surface electronic states. The effect of bulk crystal symmetry on the properties...
-
Flexomagneticity in buckled shear deformable hard-magnetic soft structures
PublikacjaThis research work performs the first time exploring and addressing the flexomagnetic property in a shear deformable piezomagnetic structure. The strain gradient reveals flexomagneticity in a magnetization phenomenon of structures regardless of their atomic lattice is symmetrical or asymmetrical. It is assumed that a synchronous converse magnetization couples both piezomagnetic and flexomagnetic features into the material structure....
-
Elżbieta Cecerska-Heryć dr n.med.
OsobyWykształcenie i stopnie naukowe: 19.06.2018 r.ukończenie studiów doktoranckich z wyróżnieniem summa cum laudena Wydziale Lekarskim z OdziałemNauczania w Języku Angielskim PUM SzczecinStopień naukowy: doktor nauk medycznychWyższe2008-2013 Pomorski Uniwersytet Medyczny w Szczecinie Kierunek: Biotechnologia Specjalność: Biotechnologia MedycznaStudia licencjackie i magisterskieZatrudnienie...
-
Antiferromagneticspinglass-likebehaviorinsinteredmultiferroic AurivilliusBim+1Ti3Fem−3O3m+3 compounds
PublikacjaThe structure,hyperfine interactionsandmagneticpropertiesoftheseriesofmultiferroicBim+1Ti3Fem−3 O3m+3 Aurivilliuscompoundswith m¼4–8 werestudiedusingX-raydiffraction, 57Fe Mössbauer spectroscopyandvibratingsamplemagnetometry.Sampleswerepreparedbytheconventionalsolid- state sinteringmethod.Bulkmagneticmeasurementsshowedthatfor m¼4 thecompoundis paramagnetic downto2Kwhileinthecompoundwith m¼5 theantiferromagnetictypetransition wasobservedat11K.Inthecaseofcompoundswith...