Wyniki wyszukiwania dla: VERTEX-EDGE DOMINATION - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: VERTEX-EDGE DOMINATION

Wyniki wyszukiwania dla: VERTEX-EDGE DOMINATION

  • Bounds on the vertex-edge domination number of a tree

    Publikacja

    - COMPTES RENDUS MATHEMATIQUE - Rok 2014

    A vertex-edge dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every edge of $G$ is incident with a vertex of $D$ or a vertex adjacent to a vertex of $D$. The vertex-edge domination number of a graph $G$, denoted by $\gamma_{ve}(T)$, is the minimum cardinality of a vertex-edge dominating set of $G$. We prove that for every tree $T$ of order $n \ge 3$ with $l$ leaves and $s$ support vertices we have $(n-l-s+3)/4...

  • Interval Edge Coloring of Bipartite Graphs with Small Vertex Degrees

    An edge coloring of a graph G is called interval edge coloring if for each v ∈ V(G) the set of colors on edges incident to v forms an interval of integers. A graph G is interval colorable if there is an interval coloring of G. For an interval colorable graph G, by the interval chromatic index of G, denoted by χ'_i(G), we mean the smallest number k such that G is interval colorable with k colors. A bipartite graph G is called (α,β)-biregular...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Influence of edge subdivision on the convex domination number

    We study the influence of edge subdivision on the convex domination number. We show that in general an edge subdivision can arbitrarily increase and arbitrarily decrease the convex domination number. We also find some bounds for unicyclic graphs and we investigate graphs G for which the convex domination number changes after subdivision of any edge in G.

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Edge subdivision and edge multisubdivision versus some domination related parameters in generalized corona graphs

    Publikacja

    - Opuscula Mathematica - Rok 2016

    Given a graph G= (V, E), the subdivision of an edge e=uv∈E(G) means the substitution of the edge e by a vertex x and the new edges ux and xv. The domination subdivision number of a graph G is the minimum number of edges of G which must be subdivided (where each edge can be subdivided at most once) in order to increase the domination number. Also, the domination multisubdivision number of G is the minimum number of subdivisions...

    Pełny tekst do pobrania w portalu

  • Domination numbers in graphs with removed edge or set of edges

    W artykule przedstawiony jest wpływ usuwania krawędzi lub zbioru krawędzi na liczby dominowania spójnego i słabo spójnego.

    Pełny tekst do pobrania w portalu

  • Similarities and Differences Between the Vertex Cover Number and the Weakly Connected Domination Number of a Graph

    Publikacja
    • M. Lemańska
    • J. A. RODRíGUEZ-VELáZQUEZ
    • R. Trujillo-Rasua

    - FUNDAMENTA INFORMATICAE - Rok 2017

    A vertex cover of a graph G = (V, E) is a set X ⊂ V such that each edge of G is incident to at least one vertex of X. The ve cardinality of a vertex cover of G. A dominating set D ⊆ V is a weakly connected dominating set of G if the subgraph G[D]w = (N[D], Ew) weakly induced by D, is connected, where Ew is the set of all edges having at least one vertex in D. The weakly connected domination number γw(G) of G is the minimum cardinality...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • INFLUENCE OF A VERTEX REMOVING ON THE CONNECTED DOMINATION NUMBER – APPLICATION TO AD-HOC WIRELESS NETWORKS

    Publikacja

    - Rok 2015

    A minimum connected dominating set (MCDS) can be used as virtual backbone in ad-hoc wireless networks for efficient routing and broadcasting tasks. To find the MCDS is an NP- complete problem even in unit disk graphs. Many suboptimal algorithms are reported in the literature to find the MCDS using local information instead to use global network knowledge, achieving an important reduction in complexity. Since a wireless network...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Some variants of perfect graphs related to the matching number, the vertex cover and the weakly connected domination number

    Publikacja

    Given two types of graph theoretical parameters ρ and σ, we say that a graph G is (σ, ρ)- perfect if σ(H) = ρ(H) for every non-trivial connected induced subgraph H of G. In this work we characterize (γw, τ )-perfect graphs, (γw, α′)-perfect graphs, and (α′, τ )-perfect graphs, where γw(G), τ (G) and α′(G) denote the weakly connected domination number, the vertex cover number and the matching number of G, respectively. Moreover,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Certified domination

    Publikacja

    Imagine that we are given a set D of officials and a set W of civils. For each civil x ∈ W, there must be an official v ∈ D that can serve x, and whenever any such v is serving x, there must also be another civil w ∈ W that observes v, that is, w may act as a kind of witness, to avoid any abuse from v. What is the minimum number of officials to guarantee such a service, assuming a given social network? In this paper, we introduce...

    Pełny tekst do pobrania w portalu

  • Independent Domination Subdivision in Graphs

    Publikacja

    - GRAPHS AND COMBINATORICS - Rok 2021

    A set $S$ of vertices in a graph $G$ is a dominating set if every vertex not in $S$ is adjacent to a vertex in~$S$. If, in addition, $S$ is an independent set, then $S$ is an independent dominating set. The independent domination number $i(G)$ of $G$ is the minimum cardinality of an independent dominating set in $G$. The independent domination subdivision number $\sdi(G)$ is the minimum number of edges that must be subdivided (each...

    Pełny tekst do pobrania w portalu

  • The convex domination subdivision number of a graph

    Publikacja

    Let G = (V;E) be a simple graph. A set D\subset V is a dominating set of G if every vertex in V - D has at least one neighbor in D. The distance d_G(u, v) between two vertices u and v is the length of a shortest (u, v)-path in G. An (u, v)-path of length d_G(u; v) is called an (u, v)-geodesic. A set X\subset V is convex in G if vertices from all (a, b)-geodesics belong to X for any two vertices a, b \in X. A set X is a convex dominating...

    Pełny tekst do pobrania w portalu

  • On trees with double domination number equal to 2-domination number plus one

    A vertex of a graph is said to dominate itself and all of its neighbors. A subset D subseteq V(G) is a 2-dominating set of G if every vertex of V(G)D is dominated by at least two vertices of D, while it is a double dominating set of G if every vertex of G is dominated by at least two vertices of D. The 2-domination (double domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (double dominating,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • On trees with equal domination and total outer-independent domination numbers

    Publikacja

    For a graph G=(V,E), a subset D subseteq V(G) is a dominating set if every vertex of V(G)D has a neighbor in D, while it is a total outer-independent dominating set if every vertex of G has a neighbor in D, and the set V(G)D is independent. The domination (total outer-independent domination, respectively) number of G is the minimum cardinality of a dominating (total outer-independent dominating, respectively) set of G. We characterize...

  • On trees with double domination number equal to total domination number plus one

    Publikacja

    A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The total (double, respectively) domination number of a graph G is the minimum cardinality of a total (double,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Total Domination Versus Domination in Cubic Graphs

    Publikacja

    A dominating set in a graph G is a set S of vertices of G such that every vertex not in S has a neighbor in S. Further, if every vertex of G has a neighbor in S, then S is a total dominating set of G. The domination number,γ(G), and total domination number, γ_t(G), are the minimum cardinalities of a dominating set and total dominating set, respectively, in G. The upper domination number, \Gamma(G), and the upper total domination...

    Pełny tekst do pobrania w portalu

  • Graphs with equal domination and certified domination numbers

    Publikacja

    - Opuscula Mathematica - Rok 2019

    A setDof vertices of a graphG= (VG,EG) is a dominating set ofGif every vertexinVG−Dis adjacent to at least one vertex inD. The domination number (upper dominationnumber, respectively) ofG, denoted byγ(G) (Γ(G), respectively), is the cardinality ofa smallest (largest minimal, respectively) dominating set ofG. A subsetD⊆VGis calleda certified dominating set ofGifDis a dominating set ofGand every vertex inDhas eitherzero...

    Pełny tekst do pobrania w portalu

  • Domination-Related Parameters in Rooted Product Graphs

    Abstract A set S of vertices of a graph G is a dominating set in G if every vertex outside of S is adjacent to at least one vertex belonging to S. A domination parameter of G is related to those sets of vertices of a graph satisfying some domination property together with other conditions on the vertices of G. Here, we investigate several domination-related parameters in rooted product graphs.

    Pełny tekst do pobrania w serwisie zewnętrznym

  • On the ratio between 2-domination and total outer-independent domination numbers of trees

    A 2-dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D. A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The 2-domination (total outer-independent domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (total...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • On trees with double domination number equal to 2-outer-independent domination number plus one

    A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G is the minimum cardinality of a double dominating set of G. For a graph G=(V,E), a subset D subseteq V(G) is a 2-dominating set if every vertex of V(G)D has at least two neighbors...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Domination subdivision and domination multisubdivision numbers of graphs

    The domination subdivision number sd(G) of a graph G is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the domination number of G. It has been shown [10] that sd(T)<=3 for any tree T. We prove that the decision problem of the domination subdivision number is NP-complete even for bipartite graphs. For this reason we define the domination multisubdivision number...

    Pełny tekst do pobrania w portalu

  • 2-outer-independent domination in graphs

    Publikacja

    We initiate the study of 2-outer-independent domination in graphs. A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)\D has at least two neighbors in D, and the set V(G)\D is independent. The 2-outer-independent domination number of a graph G is the minimum cardinality of a 2-outer-independent dominating set of G. We show that if a graph has minimum degree at least two,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Paired domination subdivision and multisubdivision numbers of graphs

    The paired domination subdivision number sdpr(G) of a graph G is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the paired domination number of G. We prove that the decision problem of the paired domination subdivision number is NP-complete even for bipartite graphs. For this reason we define the paired domination muttisubdivision number of a nonempty graph...

    Pełny tekst do pobrania w portalu

  • On trees with equal 2-domination and 2-outer-independent domination numbers

    For a graph G = (V,E), a subset D \subseteq V(G) is a 2-dominating set if every vertex of V(G)\D$ has at least two neighbors in D, while it is a 2-outer-independent dominating set if additionally the set V(G)\D is independent. The 2-domination (2-outer-independent domination, respectively) number of G, is the minimum cardinality of a 2-dominating (2-outer-independent dominating, respectively) set of G. We characterize all trees...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Unicyclic graphs with equal total and total outer-connected domination numbers

    Publikacja

    Let G = (V,E) be a graph without an isolated vertex. A set D ⊆ V (G) is a total dominating set if D is dominating and the in- duced subgraph G[D] does not contain an isolated vertex. The total domination number of G is the minimum cardinality of a total domi- nating set of G. A set D ⊆ V (G) is a total outer–connected dominating set if D is total dominating and the induced subgraph G[V (G)−D] is a connected graph. The total outer–connected...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • On the connected and weakly convex domination numbers

    In this paper we study relations between connected and weakly convex domination numbers. We show that in general the difference between these numbers can be arbitrarily large and we focus on the graphs for which a weakly convex domination number equals a connected domination number. We also study the influence of the edge removing on the weakly convex domination number, in particular we show that a weakly convex domination number...

    Pełny tekst do pobrania w portalu

  • TOTAL DOMINATION MULTISUBDIVISION NUMBER OF A GRAPH

    Publikacja

    - Discussiones Mathematicae Graph Theory - Rok 2015

    The domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msd_t (G) of a graph G and we show that for any connected graph G of order at least two, msd_t (G) ≤ 3. We show that for trees the total domination...

    Pełny tekst do pobrania w portalu

  • Cops, a fast robber and defensive domination on interval graphs

    Publikacja

    - THEORETICAL COMPUTER SCIENCE - Rok 2019

    The game of Cops and ∞-fast Robber is played by two players, one controlling c cops, the other one robber. The players alternate in turns: all the cops move at once to distance at most one each, the robber moves along any cop-free path. Cops win by sharing a vertex with the robber, the robber by avoiding capture indefinitely. The game was proposed with bounded robber speed by Fomin et al. in “Pursuing a fast robber on a graph”,...

    Pełny tekst do pobrania w portalu

  • Total domination in versus paired-domination in regular graphs

    A subset S of vertices of a graph G is a dominating set of G if every vertex not in S has a neighbor in S, while S is a total dominating set of G if every vertex has a neighbor in S. If S is a dominating set with the additional property that the subgraph induced by S contains a perfect matching, then S is a paired-dominating set. The domination number, denoted γ(G), is the minimum cardinality of a dominating set of G, while the...

    Pełny tekst do pobrania w portalu

  • All graphs with paired-domination number two less than their order

    Publikacja

    Let G=(V,E) be a graph with no isolated vertices. A set S⊆V is a paired-dominating set of G if every vertex not in S is adjacent with some vertex in S and the subgraph induced by S contains a perfect matching. The paired-domination number γp(G) of G is defined to be the minimum cardinality of a paired-dominating set of G. Let G be a graph of order n. In [Paired-domination in graphs, Networks 32 (1998), 199-206] Haynes and Slater...

    Pełny tekst do pobrania w portalu

  • On trees attaining an upper bound on the total domination number

    A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. The total domination number of a graph G, denoted by γ_t(G), is the minimum cardinality of a total dominating set of G. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International Journal of Graphs and Combinatorics 1 (2004), 69-75] established the following upper bound on the total domination...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • An Alternative Proof of a Lower Bound on the 2-Domination Number of a Tree

    A 2-dominating set of a graph G is a set D of vertices of G such that every vertex not in D has a at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. Fink and Jacobson [n-domination in graphs, Graph theory with applications to algorithms and computer science, Wiley, New York, 1985, 283-300] established the following lower bound on the 2-domination...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Coronas and Domination Subdivision Number of a Graph

    In this paper, for a graph G and a family of partitions P of vertex neighborhoods of G, we define the general corona G ◦P of G. Among several properties of this new operation, we focus on application general coronas to a new kind of characterization of trees with the domination subdivision number equal to 3.

    Pełny tekst do pobrania w portalu

  • Block graphs with large paired domination multisubdivision number

    Publikacja

    The paired domination multisubdivision number of a nonempty graph G, denoted by msdpr(G), is the smallest positive integer k such that there exists an edge which must be subdivided k times to increase the paired domination number of G. It is known that msdpr(G) ≤ 4 for all graphs G. We characterize block graphs with msdpr(G) = 4.

    Pełny tekst do pobrania w portalu

  • Weakly convex domination subdivision number of a graph

    Publikacja

    - FILOMAT - Rok 2016

    A set X is weakly convex in G if for any two vertices a; b \in X there exists an ab–geodesic such that all of its vertices belong to X. A set X \subset V is a weakly convex dominating set if X is weakly convex and dominating. The weakly convex domination number \gamma_wcon(G) of a graph G equals the minimum cardinality of a weakly convex dominating set in G. The weakly convex domination subdivision number sd_wcon (G) is the minimum...

    Pełny tekst do pobrania w portalu

  • An upper bound for the double outer-independent domination number of a tree

    A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)\D is independent. The double outer-independent domination number of a graph G, denoted by γ_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We prove...

    Pełny tekst do pobrania w portalu

  • Secure Italian domination in graphs

    Publikacja

    - JOURNAL OF COMBINATORIAL OPTIMIZATION - Rok 2021

    An Italian dominating function (IDF) on a graph G is a function f:V(G)→{0,1,2} such that for every vertex v with f(v)=0, the total weight of f assigned to the neighbours of v is at least two, i.e., ∑u∈NG(v)f(u)≥2. For any function f:V(G)→{0,1,2} and any pair of adjacent vertices with f(v)=0 and u with f(u)>0, the function fu→v is defined by fu→v(v)=1, fu→v(u)=f(u)−1 and fu→v(x)=f(x) whenever x∈V(G)∖{u,v}. A secure Italian dominating...

    Pełny tekst do pobrania w portalu

  • A lower bound on the double outer-independent domination number of a tree

    Publikacja

    A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)D is independent. The double outer-independent domination number of a graph G, denoted by gamma_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We...

    Pełny tekst do pobrania w portalu

  • Weakly connected Roman domination in graphs

    A Roman dominating function on a graph G=(V,E) is defined to be a function f :V → {0,1,2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v)=2. A dominating set D⊆V is a weakly connected dominating set of G if the graph (V,E∩(D×V)) is connected. We define a weakly connected Roman dominating function on a graph G to be a Roman dominating function such that the set...

    Pełny tekst do pobrania w portalu

  • Distributed graph searching with a sense of direction

    In this work we consider the edge searching problem for vertex-weighted graphs with arbitrarily fast and invisible fugitive. The weight function w provides for each vertex v the minimum number of searchers required to guard v, i.e., the fugitive may not pass through v without being detected only if at least w(v) searchers are present at v. This problem is a generalization of the classical edge searching problem, in which one has...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • A collection of directed graphs for the minimum cycle mean weight computation

    Dane Badawcze
    open access

    This dataset contains definitions of the 16 directed graphs with weighted edges that were described in the following paper: Paweł Pilarczyk, A space-efficient algorithm for computing the minimum cycle mean in a directed graph, Journal of Mathematics and Computer Science, 20 (2020), no. 4, 349--355, DOI: 10.22436/jmcs.020.04.08, URL: http://dx.doi.org/10.22436/jmcs.020.04.08   These...

  • A lower bound on the total outer-independent domination number of a tree

    A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_t^{oi}(T) >= (2n-2l+2)/3,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • An upper bound on the 2-outer-independent domination number of a tree

    A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D, and the set V(G)D is independent. The 2-outer-independent domination number of a graph G, denoted by gamma_2^{oi}(G), is the minimum cardinality of a 2-outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_2^{oi}(T) <= (n+l)/2,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Bipartite theory of graphs: outer-independent domination

    Publikacja

    - NATIONAL ACADEMY SCIENCE LETTERS-INDIA - Rok 2015

    Let $G = (V,E)$ be a bipartite graph with partite sets $X$ and $Y$. Two vertices of $X$ are $X$-adjacent if they have a common neighbor in $Y$, and they are $X$-independent otherwise. A subset $D \subseteq X$ is an $X$-outer-independent dominating set of $G$ if every vertex of $X \setminus D$ has an $X$-neighbor in $D$, and all vertices of $X \setminus D$ are pairwise $X$-independent. The $X$-outer-independent domination number...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • An O ( n log n ) algorithm for finding edge span of cacti

    Let G=(V,E) be a nonempty graph and xi be a function. In the paper we study the computational complexity of the problem of finding vertex colorings c of G such that: (1) |c(u)-c(v)|>=xi(uv) for each edge uv of E; (2) the edge span of c, i.e. max{|c(u)-c(v)|: uv belongs to E}, is minimal. We show that the problem is NP-hard for subcubic outerplanar graphs of a very simple structure (similar to cycles) and polynomially solvable for...

    Pełny tekst do pobrania w portalu

  • An upper bound on the total outer-independent domination number of a tree

    Publikacja

    A total outer-independent dominating set of a graph G=(V(G),E(G)) is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order n >= 4, with l leaves and s support vertices we have...

    Pełny tekst do pobrania w portalu

  • Three-fast-searchable graphs

    Publikacja

    - DISCRETE APPLIED MATHEMATICS - Rok 2013

    In the edge searching problem, searchers move from vertex to vertex in a graph to capture an invisible, fast intruder that may occupy either vertices or edges. Fast searching is a monotonic internal model in which, at every move, a new edge of the graph G must be guaranteed to be free of the intruder. That is, once all searchers are placed the graph G is cleared in exactly |E(G)| moves. Such a restriction obviously necessitates...

    Pełny tekst do pobrania w portalu

  • No-Wait & No-Idle Open Shop Minimum Makespan Scheduling with Bioperational Jobs

    In the open shop scheduling with bioperational jobs each job consists of two unit operations with a delay between the end of the first operation and the beginning of the second one. No-wait requirement enforces that the delay between operations is equal to 0. No-idle means that there is no idle time on any machine. We model this problem by the interval incidentor (1, 1)-coloring (IIR(1, 1)-coloring) of a graph with the minimum...

    Pełny tekst do pobrania w portalu

  • Graph Decomposition for Memoryless Periodic Exploration

    Publikacja

    - ALGORITHMICA - Rok 2012

    We consider a general framework in which a memoryless robot periodically explores all the nodes of a connected anonymous graph by following local information available at each vertex. For each vertex v, the endpoints of all edges adjacent to v are assigned unique labels within the range 1 to deg (v) (the degree of v). The generic exploration strategy is implemented using a right-hand-rule transition function: after entering vertex...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Some variations of perfect graphs

    Publikacja

    - Discussiones Mathematicae Graph Theory - Rok 2016

    We consider (ψk−γk−1)-perfect graphs, i.e., graphs G for which ψk(H) =γk−1(H) for any induced subgraph H of G, where ψk and γk−1 are the k -path vertex cover number and the distance (k−1)-domination number, respectively. We study (ψk−γk−1)-perfect paths, cycles and complete graphs for k≥2. Moreover, we provide a complete characterisation of (ψ2−γ1)-perfect graphs describing the set of its forbidden induced subgraphs and providing...

    Pełny tekst do pobrania w portalu

  • A Framework for Searching in Graphs in the Presence of Errors

    Publikacja

    - Rok 2019

    We consider a problem of searching for an unknown target vertex t in a (possibly edge-weighted) graph. Each vertex-query points to a vertex v and the response either admits that v is the target or provides any neighbor s of v that lies on a shortest path from v to t. This model has been introduced for trees by Onak and Parys [FOCS 2006] and for general graphs by Emamjomeh-Zadeh et al. [STOC 2016]. In the latter, the authors provide...

    Pełny tekst do pobrania w serwisie zewnętrznym