Filtry
wszystkich: 8
Wyniki wyszukiwania dla: classificationdetectionsegmentationcerebral microbleedscmbautomatic diagnosiscomputer-aided diagnosis
-
Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier
PublikacjaIn recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia....
-
ColorNephroNet: Kidney tumor malignancy prediction using medical image colorization
PublikacjaRenal tumor malignancy classification is one of the crucial tasks in urology, being a primary factor included in the decision of whether to perform kidney removal surgery (nephrectomy) or not. Currently, tumor malignancy prediction is determined by the radiological diagnosis based on computed tomography (CT) images. However, it is estimated that up to 16% of nephrectomies could have been avoided because the tumor that had been...
-
Exploring the landscape of automatic cerebral microbleed detection: A comprehensive review of algorithms, current trends, and future challenges
PublikacjaThis paper provides the first review to date which gathers, describes, and assesses, to the best of our knowledge, all available publications on automating cerebral microbleed (CMB) detection. It provides insights into the current state of the art and highlights the challenges and opportunities in this topic. By incorporating the best practices identified in this review, we established guidelines for the development of CMB detection...
-
Optimal selection of input features and an acompanying neural network structure for the classification purposes - skin lesions case study
PublikacjaMalignant melanomas are the most deadly type of skin cancers however detected early enough give a high chances for successful treatment. The last years saw the dynamic growth of interest of automatic computer-aided skin cancer diagnosis. Every month brings new research results on new approaches to this problem, new methods of preprocessing, new classifiers, new ideas to follow etc. In particular, the rapid development of dermatoscopy,...
-
Magnetic nanocomposites for biomedical applications
PublikacjaTissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular,...
-
DIAGNOSIS OF MALIGNANT MELANOMA BY NEURAL NETWORK ENSEMBLE-BASED SYSTEM UTILISING HAND-CRAFTED SKIN LESION FEATURES
PublikacjaMalignant melanomas are the most deadly type of skin cancer but detected early have high chances for successful treatment. In the last twenty years, the interest of automated melanoma recognition detection and classification dynamically increased partially because of public datasets appearing with dermatoscopic images of skin lesions. Automated computer-aided skin cancer detection in dermatoscopic images is a very challenging task...
-
Robust and Efficient Machine Learning Algorithms for Visual Recognition
PublikacjaIn visual recognition, the task is to identify and localize all objects of interest in the input image. With the ubiquitous presence of visual data in modern days, the role of object recognition algorithms is becoming more significant than ever and ranges from autonomous driving to computer-aided diagnosis in medicine. Current models for visual recognition are dominated by models based on Convolutional Neural Networks (CNNs), which...
-
Segmentation-Based BI-RADS ensemble classification of breast tumours in ultrasound images
PublikacjaBackground: The development of computer-aided diagnosis systems in breast cancer imaging is exponential. Since 2016, 81 papers have described the automated segmentation of breast lesions in ultrasound images using arti- ficial intelligence. However, only two papers have dealt with complex BI-RADS classifications. Purpose: This study addresses the automatic classification of breast lesions into binary classes (benign vs. ma- lignant)...