Wyniki wyszukiwania dla: eeg signal classification - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: eeg signal classification

Wyniki wyszukiwania dla: eeg signal classification

  • Comparison of the effectiveness of automatic EEG signal class separation algorithms

    In this paper, an algorithm for automatic brain activity class identification of EEG (electroencephalographic) signals is presented. EEG signals are gathered from seventeen subjects performing one of the three tasks: resting, watching a music video and playing a simple logic game. The methodology applied consists of several steps, namely: signal acquisition, signal processing utilizing z-score normalization, parametrization and...

    Pełny tekst do pobrania w portalu

  • Comparison of Classification Methods for EEG Signals of Real and Imaginary Motion

    Publikacja

    The classification of EEG signals provides an important element of brain-computer interface (BCI) applications, underlying an efficient interaction between a human and a computer application. The BCI applications can be especially useful for people with disabilities. Numerous experiments aim at recognition of motion intent of left or right hand being useful for locked-in-state or paralyzed subjects in controlling computer applications....

    Pełny tekst do pobrania w portalu

  • Comparison of selected electroencephalographic signal classification methods

    A variety of methods exists for electroencephalographic (EEG) signals classification. In this paper, we briefly review selected methods developed for such a purpose. First, a short description of the EEG signal characteristics is shown. Then, a comparison between the selected EEG signal classification methods, based on the overview of research studies on this topic, is presented. Examples of methods included in the study are: Artificial...

  • Comparison of Methods for Real and Imaginary Motion Classification from EEG Signals

    Publikacja

    A method for feature extraction and results of classification of EEG signals obtained from performed and imagined motion are presented. A set of 615 features was obtained to serve for the recognition of type and laterality of motion using 8 different classifications approaches. A comparison of achieved classifiers accuracy is presented in the paper, and then conclusions and discussion are provided. Among applied algorithms the...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Rough Set-Based Classification of EEG Signals Related to Real and Imagery Motion

    Publikacja

    - Rok 2016

    A rough set-based approach to classification of EEG signals registered while subjects were performing real and imagery motions is presented in the paper. The appropriate subset of EEG channels is selected, the recordings are segmented, and features are extracted, based on time-frequency decomposition of the signal. Rough set classifier is trained in several scenarios, comparing accuracy of classification for real and imagery motion....

  • Pursuing the Deep-Learning-Based Classification of Exposed and Imagined Colors from EEG

    Publikacja

    - LECTURE NOTES IN COMPUTER SCIENCE - Rok 2022

    EEG-based brain-computer interfaces are systems aiming to integrate disabled people into their environments. Nevertheless, their control could not be intuitive or depend on an active external stimulator to generate the responses for interacting with it. Targeting the second issue, a novel paradigm is explored in this paper, which depends on a passive stimulus by measuring the EEG responses of a subject to the primary colors (red,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Real and imaginary motion classification based on rough set analysis of EEG signals for multimedia applications

    Rough set-based approach to the classification of EEG signals of real and imaginary motion is presented. The pre-processing and signal parametrization procedures are described, the rough set theory is briefly introduced, and several classification scenarios and parameters selection methods are proposed. Classification results are provided and discussed with their potential utilization for multimedia applications controlled by the...

    Pełny tekst do pobrania w portalu

  • Brain-computer interaction based on EEG signal and gaze-tracking information = Analiza interackji mózg-komputer wykorzystująca sygnał EEg i informacje z systemu śledzenia punktu fiksacji wzroku

    The article presents an attempt to integrate EEG signal analysis with information about human visual activities, i.e. gaze fixation point. The results from gaze-tracking-based measurement were combined with the standard EEG analysis. A search for correlation between the brain activity and the region of the screen observed by the user was performed. The preliminary stage of the study consists in electrooculography (EOG) signal processing....

  • Influence of accelerometer signal pre-processing and classification method on human activity recognition

    A study of data pre-processing influence on accelerometer-based human activity recognition algorithms is presented. The frequency band used to filter-out the accelerometer signals and the number of accelerometers involved were considered in terms of their influence on the recognition accuracy. In the test four methods of classification were used: support vector machine, decision trees, neural network, k-nearest neighbor.

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Combined method of multibeam sonar signal processing and image analysis for seafloor classification

    Publikacja

    The combined approach to seafloor characterisation was investigated. It relies on calculation of several descriptors (parameters) related to seabed type using three types of multibeam sonar data obtained during seafloor sensing: 1) the grey-level sonar images (echograms) of seabed, 2) the 3D model of the seabed surface which consists of bathymetric data, 3) the set of time domain bottom echo envelopes received in the consecutive...

  • Bimodal classification of English allophones employing acoustic speech signal and facial motion capture

    A method for automatic transcription of English speech into International Phonetic Alphabet (IPA) system is developed and studied. The principal objective of the study is to evaluate to what extent the visual data related to lip reading can enhance recognition accuracy of the transcription of English consonantal and vocalic allophones. To this end, motion capture markers were placed on the faces of seven speakers to obtain lip...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Analysis of the Capability of Deep Learning Algorithms for EEG-based Brain-Computer Interface Implementation

    Publikacja

    - Rok 2023

    Machine learning models have received significant attention for their exceptional performance in classifying electroencephalography (EEG) data. They have proven to be highly effective in extracting intricate patterns and features from the raw signal data, thereby contributing to their success in EEG classification tasks. In this study, we explore the possibilities of utilizing contemporary machine learning algorithms in decoding...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Decoding imagined speech for EEG-based BCI

    Publikacja
    • C. A. Reyes-García
    • A. A. Torres-García
    • T. Hernández-del-Toro
    • J. S. Garcia Salinas
    • L. Villaseñor-Pineda

    - Rok 2024

    Brain–computer interfaces (BCIs) are systems that transform the brain's electrical activity into commands to control a device. To create a BCI, it is necessary to establish the relationship between a certain stimulus, internal or external, and the brain activity it provokes. A common approach in BCIs is motor imagery, which involves imagining limb movement. Unfortunately, this approach allows few commands. As an alternative, this...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Michał Lech dr inż.

    Osoby

    Michał Lech was born in Gdynia in 1983. In 2007 he graduated from the faculty of Electronics, Telecommunications and Informatics of Gdansk University of Technology. In June 2013, he received his Ph.D. degree. The subject of the dissertation was: “A Method and Algorithms for Controlling the Sound Mixing Processes with Hand Gestures Recognized Using Computer Vision”. The main focus of the thesis was the bias of audio perception caused...

  • Analyzing the Effectiveness of the Brain–Computer Interface for Task Discerning Based on Machine Learning

    Publikacja

    The aim of the study is to compare electroencephalographic (EEG) signal feature extraction methods in the context of the effectiveness of the classification of brain activities. For classification, electroencephalographic signals were obtained using an EEG device from 17 subjects in three mental states (relaxation, excitation, and solving logical task). Blind source separation employing independent component analysis (ICA) was...

    Pełny tekst do pobrania w portalu

  • Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance

    Publikacja
    • K. Saboo
    • Y. Varatharajah
    • B. M. Berry
    • V. Kremen
    • M. R. Sperling
    • K. A. Davis
    • B. C. Jobst
    • R. E. Gross
    • B. C. Lega
    • S. A. Sheth... i 3 innych

    - Scientific Reports - Rok 2019

    Identification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable...

    Pełny tekst do pobrania w portalu

  • Transfer learning in imagined speech EEG-based BCIs

    Publikacja

    - Biomedical Signal Processing and Control - Rok 2019

    The Brain–Computer Interfaces (BCI) based on electroencephalograms (EEG) are systems which aim is to provide a communication channel to any person with a computer, initially it was proposed to aid people with disabilities, but actually wider applications have been proposed. These devices allow to send messages or to control devices using the brain signals. There are different neuro-paradigms which evoke brain signals of interest...

    Pełny tekst do pobrania w portalu

  • Deep learning approach on surface EEG based Brain Computer Interface

    Publikacja

    - Rok 2022

    In this work we analysed the application of con-volutional neural networks in motor imagery classification for the Brain Computer Interface (BCI) purposes. To increase the accuracy of classification we proposed the solution that combines the Common Spatial Pattern (CSP) with convolutional network (ConvNet). The electroencephalography (EEG) is one of the modalities we try to use for controlling the prosthetic arm. Therefor in this...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • MACHINE LEARNING APPLICATIONS IN RECOGNIZING HUMAN EMOTIONS BASED ON THE EEG

    Publikacja
    • A. Kastrau
    • M. Koronowski
    • M. Liksza
    • P. Jasik

    - Rok 2021

    This study examined the machine learning-based approach allowing the recognition of human emotional states with the use of EEG signals. After a short introduction to the fundamentals of electroencephalography and neural oscillations, the two-dimensional valence-arousal Russell’s model of emotion was described. Next, we present the assumptions of the performed EEG experiment. Detail aspects of the data sanitization including preprocessing,...

  • Automatic Clustering of EEG-Based Data Associated with Brain Activity

    The aim of this paper is to present a system for automatic assigning electroencephalographic (EEG) signals to appropriate classes associated with brain activity. The EEG signals are acquired from a headset consisting of 14 electrodes placed on skull. Data gathered are first processed by the Independent Component Analysis algorithm to obtain estimates of signals generated by primary sources reflecting the activity of the brain....

    Pełny tekst do pobrania w serwisie zewnętrznym

  • How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image

    Publikacja
    • T. Kocejko
    • N. Matuszkiewicz
    • J. Kwiatkowski
    • P. Durawa
    • A. Madajczak

    - SENSORS - Rok 2024

    This study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation...

    Pełny tekst do pobrania w portalu

  • Behavioral state classification in epileptic brain using intracranial electrophysiology

    Publikacja
    • V. Kremen
    • J. J. Duque
    • B. Brinkmann
    • B. M. Berry
    • M. T. Kucewicz
    • F. Khadjevand
    • J. Van Gompel
    • M. Stead
    • E. K. ST.Louis
    • G. A. Worrell

    - Journal of Neural Engineering - Rok 2017

    OBJECTIVE: Automated behavioral state classification can benefit next generation implantable epilepsy devices. In this study we explored the feasibility of automated awake (AW) and slow wave sleep (SWS) classification using wide bandwidth intracranial EEG (iEEG) in patients undergoing evaluation for epilepsy surgery. APPROACH: Data from seven patients (age [Formula: see text], 4 women) who underwent intracranial depth electrode...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Multimodal Approach For Polysensory Stimulation And Diagnosis Of Subjects With Severe Communication Disorders

    Publikacja

    is evaluated on 9 patients, data analysis methods are described, and experiments of correlating Glasgow Coma Scale with extracted features describing subjects performance in therapeutic exercises exploiting EEG and eyetracker are presented. Performance metrics are proposed, and k-means clusters used to define concepts for mental states related to EEG and eyetracking activity. Finally, it is shown that the strongest correlations...

    Pełny tekst do pobrania w portalu

  • AUTOMATYCZNA KLASYFIKACJA MOWY PATOLOGICZNEJ

    Publikacja

    Aplikacja przedstawiona w niniejszym rozdziale służy do automatycznego wykrywania mowy patologicznej na podstawie bazy nagrań. W pierwszej kolejności przedstawiono założenia leżące u podstaw przeprowadzonych badan wraz z wyborem bazy mowy patologicznej. Zaprezentowano również zastosowane algorytmy oraz cechy sygnału mowy, które pozwalają odróżnić mowę niezaburzoną od mowy patologicznej. Wytrenowane sieci neuronowe zostały następnie...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Multimodal system for diagnosis and polysensory stimulation of subjects with communication disorders

    An experimental multimodal system, designed for polysensory diagnosis and stimulation of persons with impaired communication skills or even non-communicative subjects is presented. The user interface includes an eye tracking device and the EEG monitoring of the subject. Furthermore, the system consists of a device for objective hearing testing and an autostereoscopic projection system designed to stimulate subjects through their...

  • Adrian Kastrau mgr inż.

    Osoby

  • Akustyczna analiza natężenia ruchu drogowego dla systemów zarządzania ruchem

    Publikacja

    - Rok 2019

    W pracy przybliżono wybrane zagadnienia z dziedziny zarządzania transportem drogowym w Polsce i na świecie. W tym kontekście pzredstawiono potrzeby rynkowe, wymagania jak i możliwości w zakresie pozyskiwania informacji o aktualnym stanie sieci drogowych. Zaproponowano akustyczną metodę nadzorowania ruchu drogowego i jej możliwości w kontekście systemów zarządzania ruchem. Przedstawiono schemat akwizycji sygnału wraz z danymi odniesienia....

  • Labeler-hot Detection of EEG Epileptic Transients

    Publikacja

    - Rok 2019

    Preventing early progression of epilepsy and sothe severity of seizures requires effective diagnosis. Epileptictransients indicate the ability to develop seizures but humansoverlook such brief events in an electroencephalogram (EEG)what compromises patient treatment. Traditionally, trainingof the EEG event detection algorithms has relied on groundtruth labels, obtained from the consensus...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Wczesne wykrywanie spoofingu GNSS typu carry-off

    Publikacja

    - Rok 2018

    W referacie przedstawiono klasyfikację ataków typu spoofing ukierunkowanych na odbiorniki satelitarnych systemów nawigacyjnych GNSS. W szczególności opisano zaawansowaną formę spoofingu w wariancie tzw. carry-off, polegającym na płynnym przejęciu kontroli nad blokami śledzenia sygnałów w zakłócanym odbiorniku. Sposób realizacji takiego ataku istotnie utrudnia jego wykrycie z użyciem metod dotychczas proponowanych w literaturze....

  • Balance recognition on the basis of EEG measurement.

    Although electroencephalography (EEG) is not typically used for verifying the sense of balance, it can be used for analysing cortical signals responsible for this phenomenon. Simple balance tasks can be proposed as a good indicator of whether the sense of balance is acting more or less actively. This article presents preliminary results for the potential of using EEG to balance sensing....

    Pełny tekst do pobrania w portalu

  • Tensor Decomposition for Imagined Speech Discrimination in EEG

    Publikacja

    - LECTURE NOTES IN COMPUTER SCIENCE - Rok 2018

    Most of the researches in Electroencephalogram(EEG)-based Brain-Computer Interfaces (BCI) are focused on the use of motor imagery. As an attempt to improve the control of these interfaces, the use of language instead of movement has been recently explored, in the form of imagined speech. This work aims for the discrimination of imagined words in electroencephalogram signals. For this purpose, the analysis of multiple variables...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Metody redukcji artefaktów w zapisie EEG.

    Przegląd i opis metod badania EEG jego uwarunkowań technicznych oraz problemy z tym związane. Dokonano przeglądu metod pozwalających na zredukowanie bądź eliminacje artefaktów w zapisie EEG.

  • Marek Blok dr hab. inż.

    Osoby

    Marek Blok w 1994 roku ukończył studia na kierunku Telekomunikacja wydziału Elektroniki Politechniki Gdańskiej i uzyskał tytuł mgra inżyniera. Doktorat w zakresie telekomunikacji uzyskał w 2003 roku na Wydziale Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej. W 2017 roku uzyskał stopień naukowy dra habilitowanego w dyscyplinie telekomunikacja. Jego zainteresowania badawcze ukierunkowane są na telekomunikacyjne...

  • Method for Clustering of Brain Activity Data Derived from EEG Signals

    A method for assessing separability of EEG signals associated with three classes of brain activity is proposed. The EEG signals are acquired from 23 subjects, gathered from a headset consisting of 14 electrodes. Data are processed by applying Discrete Wavelet Transform (DWT) for the signal analysis and an autoencoder neural network for the brain activity separation. Processing involves 74 wavelets from 3 DWT families: Coiflets,...

    Pełny tekst do pobrania w portalu

  • MECHANICAL SYSTEMS AND SIGNAL PROCESSING

    Czasopisma

    ISSN: 0888-3270

  • Rating by detection: an artifact detection protocol for rating EEG quality with average event duration

    Publikacja
    • D. Węsierski
    • M. R. Rufuie
    • O. Milczarek
    • W. Ziembla
    • P. Ogniewski
    • A. Kołodziejak
    • P. Niedbalski

    - Journal of Neural Engineering - Rok 2023

    Quantitative evaluation protocols are critical for the development of algorithms that remove artifacts from real EEG optimally. However, visually inspecting the real EEG to select the top-performing artifact removal pipeline is infeasible while hand-crafted EEG data allow assessing artifact removal configurations only in a simulated environment. This study proposes a novel, principled approach for quantitatively evaluating algorithmically...

    Pełny tekst do pobrania w portalu

  • SIGNAL PROCESSING

    Czasopisma

    ISSN: 0165-1684 , eISSN: 1872-7557

  • Journal of Classification

    Czasopisma

    ISSN: 0176-4268 , eISSN: 1432-1343

  • CLINICAL EEG AND NEUROSCIENCE

    Czasopisma

    ISSN: 1550-0594 , eISSN: 2169-5202

  • Systematic Literature Review for Emotion Recognition from EEG Signals

    Publikacja

    Researchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Systematic Literature Review for Emotion Recognition from EEG Signals

    Publikacja

    Researchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...

    Pełny tekst do pobrania w portalu

  • Radio Reception Signal

    Kursy Online
    • A. Marczak
    • M. Gajewska

  • Digital Signal Processing

    Kursy Online
    • T. Stefański

  • Akustyczna analiza parametrów ruchu drogowego z wykorzystaniem informacji o hałasie oraz uczenia maszynowego

    Publikacja

    - Rok 2018

    Celem rozprawy było opracowanie akustycznej metody analizy parametrów ruchu drogowego. Zasada działania akustycznej analizy ruchu drogowego zapewnia pasywną metodę monitorowania natężenia ruchu. W pracy przedstawiono wybrane metody uczenia maszynowego w kontekście analizy dźwięku (ang.Machine Hearing). Przedstawiono metodologię klasyfikacji zdarzeń w ruchu drogowym z wykorzystaniem uczenia maszynowego. Przybliżono podstawowe...

    Pełny tekst do pobrania w portalu

  • Impact of optimization of ALS point cloud on classification

    Airborne laser scanning (ALS) is one of the LIDAR technologies (Light Detection and Ranging). It provides information about the terrain in form of a point cloud. During measurement is acquired: spatial data (object’s coordinates X, Y, Z) and collateral data such as intensity of reflected signal. The obtained point cloud is typically applied for generating a digital terrain model (DTM) and a digital surface model (DSM). For DTM...

    Pełny tekst do pobrania w portalu

  • A low complexity double-talk detector based on the signal envelope

    A new algorithm for double-talk detection, intended for use in the acoustic echo canceller for voice communication applications, is proposed. The communication system developed by the authors required the use of a double-talk detection algorithm with low complexity and good accuracy. The authors propose an approach to doubletalk detection based on the signal envelopes. For each of three signals: the far-end speech, the microphone...

    Pełny tekst do pobrania w portalu

  • IEEE TRANSACTIONS ON SIGNAL PROCESSING

    Czasopisma

    ISSN: 1053-587X , eISSN: 1941-0476

  • EEG data recorded in three mental states

    Dane Badawcze

    Electroencephalographic (EEG) signals were acquired from 17 (14 males, 3 females) participants aged between 20 and 30 years. 

  • Physics augmented classification of fNIRS signals

    Publikacja
    • F. Orihuela-Espina
    • M. Rojas-Cisneros
    • S. A. Montero-Hernández
    • J. S. Garcia Salinas
    • B. Cuervo-Soto
    • J. Herrera-Vega

    - Rok 2022

    Background. Predictive classification favours performance over semantics. In traditional predictive classification pipelines, feature engineering is often oblivious to the underlying phenomena. Hypothesis. In applied domains such as functional Near Infrared Spectroscopy (fNIRS), the exploitation of physical knowledge may improve the discriminative quality of our observation set. Aims. Give exemplary evidence that intervening the...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Systematic approach to binary classification of images in video streams using shifting time windows

    in the paper, after pointing out of realistic recordings and classifications of their frames, we propose a new shifting time window approach for improving binary classifications. We consider image classification in tewo steps. in the first one the well known binary classification algorithms are used for each image separately. In the second step the results of the previous step mare analysed in relatively short sequences of consecutive...

    Pełny tekst do pobrania w portalu