Wyniki wyszukiwania dla: machine learning · artficial intelligence · deep learning · small vessels disease · explainable ai · trustworthiness. - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: machine learning · artficial intelligence · deep learning · small vessels disease · explainable ai · trustworthiness.

Wyniki wyszukiwania dla: machine learning · artficial intelligence · deep learning · small vessels disease · explainable ai · trustworthiness.

  • Olgun Aydin dr

    Olgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Principal Machine Learning Engineer in Nike, and works as Assistant Professor in Gdansk University of Technology in Poland. Dr. Aydin is part of editorial board of "Journal of Artificial Intelligence and Data Science" Dr. Aydin served as Vice-Chairman of Why R? Foundation and is member of Polish Artificial Intelligence Society. Olgun is...

  • Deep Learning

    Publikacja

    - Rok 2021

    Deep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Deep Learning: A Case Study for Image Recognition Using Transfer Learning

    Publikacja

    - Rok 2021

    Deep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Deep Learning-Based, Multiclass Approach to Cancer Classification on Liquid Biopsy Data

    Publikacja

    - IEEE Journal of Translational Engineering in Health and Medicine-JTEHM - Rok 2024

    The field of cancer diagnostics has been revolutionized by liquid biopsies, which offer a bridge between laboratory research and clinical settings. These tests are less invasive than traditional biopsies and more convenient than routine imaging methods. Liquid biopsies allow studying of tumor-derived markers in bodily fluids, enabling the development of more precise cancer diagnostic tests for screening, disease monitoring, and...

    Pełny tekst do pobrania w portalu

  • Source code - AI models (MLM1-5 - series I-III - QNM opt)

    Dane Badawcze
    open access

    Source code - AI models (MLM1-5 - series I-III - QNM opt) for the paper "Computational Complexity and Its Influence on Concrete Compressive Strength Prediction Capabilities of Machine Learning Models for Concrete Mix Design Support" accepted for publication.

  • Abdalraheem Ijjeh Ph.D. Eng.

    Osoby

    The primary research areas of interest are artificial intelligence (AI), machine learning, deep learning, and computer vision, as well as modeling physical phenomena (i.e., guided waves in composite laminates). The research interests described above are utilized for SHM and NDE applications, namely damage detection and localization in composite materials.  

  • THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN

    Publikacja

    - Rok 2021

    In the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...

  • Explainable machine learning for diffraction patterns

    Publikacja
    • S. Nawaz
    • V. Rahmani
    • D. Pennicard
    • S. P. R. Setty
    • B. Klaudel
    • H. Graafsma

    - Journal of Applied Crystallography - Rok 2023

    Serial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...

    Pełny tekst do pobrania w portalu

  • Deep Learning Basics 2023/24

    Kursy Online
    • K. Draszawka

    A course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.

  • Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks

    Deep Neural Networks (DNN) are state of the art algorithms for image classification. Although significant achievements and perspectives, deep neural networks and accompanying learning algorithms have some important challenges to tackle. However, it appears that it is relatively easy to attack and fool with well-designed input samples called adversarial examples. Adversarial perturba-tions are unnoticeable for humans. Such attacks...

    Pełny tekst do pobrania w portalu

  • Ireneusz Czarnowski Prof.

    Osoby

    IRENEUSZ CZARNOWSKI is a graduate of the Faculty of Electrical Engineering at Gdynia Maritime University. He gained a doctoral degree in the field of computer science at Poznan University of Technology and a postdoctoral degree in the field of computer science at Wroclaw University of Science and Technology. Since 1998 is associated with Gdynia Maritime University, currently is a professor of computer science in the Department...

  • Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches

    Publikacja
    • V. G. Nguyen
    • P. Sharma
    • Ü. Ağbulut
    • H. S. Le
    • D. N. Cao
    • M. Dzida
    • S. M. Osman
    • H. C. Le
    • V. D. Tran

    - International Journal of Green Energy - Rok 2024

    Examining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent advances in sensitivity analysis methodology, optimization of training hyperparameters, and state-of-the-art ensemble techniques have greatly simplified and enhanced the forecasting of biochar output and composition from various biomass...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Machine learning for PhD students

    Kursy Online
    • W. Artichowicz

    An introductory course in machine learning for PhD students from Department of Geotechnical and Hydraulic Engineering

  • How personality traits, sports anxiety, and general imagery could influence the physiological response measured by SCL to imagined situations in sports?

    Dane Badawcze
    open access

    The data were collected to understand how individual differences in personality (e.g. neuroticism), general imagery, and situational sports anxiety are linked to arousal measuring with skin conductance level (SCL) in situational imagery (as scripted for sport-related scenes). Thirty persons participated in the study, aged between 14 and 42 years, with...

  • Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality

    Publikacja
    • W. Nazar
    • K. Nazar
    • L. Daniłowicz-Szymanowicz

    - Life - Rok 2024

    High-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Deep learning in the fog

    In the era of a ubiquitous Internet of Things and fast artificial intelligence advance, especially thanks to deep learning networks and hardware acceleration, we face rapid growth of highly decentralized and intelligent solutions that offer functionality of data processing closer to the end user. Internet of Things usually produces a huge amount of data that to be effectively analyzed, especially with neural networks, demands high...

    Pełny tekst do pobrania w portalu

  • Machine Learning and Electronic Noses for Medical Diagnostics

    Publikacja

    The need for noninvasive, easy-to-use, and inexpensive methods for point-of-care diagnostics of a variety of ailments motivates researchers to develop methods for analyzing complex biological samples, in particular human breath, that could aid in screening and early diagnosis. There are hopes that electronic noses, that is, devices based on arrays of semiselective or nonselective chemical sensors, can fill this niche. Electronic...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • TensorHive: Management of Exclusive GPU Access for Distributed Machine Learning Workloads

    TensorHive is a tool for organizing work of research and engineering teams that use servers with GPUs for machine learning workloads. In a comprehensive web interface, it supports reservation of GPUs for exclusive usage, hardware monitoring, as well as configuring, executing and queuing distributed computational jobs. Focusing on easy installation and simple configuration, the tool automatically detects the available computing...

    Pełny tekst do pobrania w portalu

  • Raw data of AuAg nanoalloy plasmon resonances used for machine learning method

    Raw data used for machine learning process. UV-vis measurements of AuAg alloyed nanostructures created from thin films. Plasmonic band position dependence on fabrication parameters. Small presentation reviewing achieved structures and their properties.

  • Speech Analytics Based on Machine Learning

    In this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Neural networks and deep learning

    Publikacja

    - Rok 2022

    In this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Deep Learning w Keras

    Kursy Online
    • A. Karpus

    Kurs przeznaczony dla słuchaczy studiów podyplomowych Sztuczna inteligencja i automatyzacja procesów biznesowych w ujęciu praktycznym - edycja biznesowa.

  • How Machine Learning Contributes to Solve Acoustical Problems

    Publikacja
    • M. A. Roch
    • P. Gerstoft
    • B. Kostek
    • Z. Michalopoulou

    - Journal of the Acoustical Society of America - Rok 2021

    Machine learning is the process of learning functional relationships between measured signals (called percepts in the artificial intelligence literature) and some output of interest. In some cases, we wish to learn very specific relationships from signals such as identifying the language of a speaker (e.g. Zissman, 1996) which has direct applications such as in call center routing or performing a music information retrieval task...

    Pełny tekst do pobrania w portalu

  • Assessing the attractiveness of human face based on machine learning

    Publikacja

    The attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...

    Pełny tekst do pobrania w portalu

  • Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions

    Publikacja

    - Polimery w Medycynie - Rok 2024

    Background. Dapsone (DAP) is an anti-inflammatory and antimicrobial active pharmaceutical ingredient used to treat, e.g., AIDS-related diseases. However, low solubility is a feature hampering its efficient use. Objectives. First, deep eutectic solvents...

    Pełny tekst do pobrania w portalu

  • Processes of enhancing the intelligence of Learning Organizations on the basis of Competence Centers

    The process of organizational learning and proper knowledge management became today one of the major challenges for the organization acting in the knowledge-based economy. According to the observations of the authors of this paper the demand for formalization of knowledge management processes and organizational learning is particularly evident in research institutions, established either by the universities, or the companies. The...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy

    Publikacja
    • G. V. Nguyen
    • P. Sharma
    • Ü. Ağbulut
    • H. S. Le
    • T. H. Truong
    • M. Dzida
    • M. H. Tran
    • H. C. Le
    • V. D. Tran

    - Biofuels Bioproducts & Biorefining-Biofpr - Rok 2024

    Biochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand for sustainable energy. Efficient management systems are needed in order to exploit fully the potential of biochar. Modern machine learning (ML) techniques, and in particular ensemble approaches and explainable AI methods, are valuable for forecasting the properties and efficiency of biochar properly. Machine-learning-based forecasts,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Designing acoustic scattering elements using machine learning methods

    Publikacja

    - Rok 2021

    In the process of the design and correction of room acoustic properties, it is often necessary to select the appropriate type of acoustic treatment devices and make decisions regarding their size, geometry, and location of the devices inside the room under the treatment process. The goal of this doctoral dissertation is to develop and validate a mathematical model that allows predicting the effects of the application of the scattering...

    Pełny tekst do pobrania w portalu

  • Data augmentation for improving deep learning in image classification problem

    Publikacja

    These days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Machine Learning Techniques in Concrete Mix Design

    Concrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which...

    Pełny tekst do pobrania w portalu

  • Introduction to the special issue on machine learning in acoustics

    Publikacja
    • Z. Michalopoulou
    • P. Gerstoft
    • B. Kostek
    • M. A. Roch

    - Journal of the Acoustical Society of America - Rok 2021

    When we started our Call for Papers for a Special Issue on “Machine Learning in Acoustics” in the Journal of the Acoustical Society of America, our ambition was to invite papers in which machine learning was applied to all acoustics areas. They were listed, but not limited to, as follows: • Music and synthesis analysis • Music sentiment analysis • Music perception • Intelligent music recognition • Musical source separation • Singing...

    Pełny tekst do pobrania w portalu

  • Machine Learning in Multi-Agent Systems using Associative Arrays

    Publikacja

    - PARALLEL COMPUTING - Rok 2018

    In this paper, a new machine learning algorithm for multi-agent systems is introduced. The algorithm is based on associative arrays, thus it becomes less complex and more efficient substitute of artificial neural networks and Bayesian networks, which is confirmed by performance measurements. Implementation of machine learning algorithm in multi-agent system for aided design of selected control systems allowed to improve the performance...

    Pełny tekst do pobrania w portalu

  • Breast MRI segmentation by deep learning: key gaps and challenges

    Publikacja

    Breast MRI segmentation plays a vital role in early diagnosis and treatment planning of breast anomalies. Convolutional neural networks with deep learning have indicated promise in automating this process, but significant gaps and challenges remain to address. This PubMed-based review provides a comprehensive literature overview of the latest deep learning models used for breast segmentation. The article categorizes the literature...

    Pełny tekst do pobrania w portalu

  • Deep learning techniques for biometric security: A systematic review of presentation attack detection systems

    Publikacja

    - ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE - Rok 2024

    Biometric technology, including finger vein, fingerprint, iris, and face recognition, is widely used to enhance security in various devices. In the past decade, significant progress has been made in improving biometric sys- tems, thanks to advancements in deep convolutional neural networks (DCNN) and computer vision (CV), along with large-scale training datasets. However, these systems have become targets of various attacks, with...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Interpretable deep learning approach for classification of breast cancer - a comparative analysis of multiple instance learning models

    Breast cancer is the most frequent female cancer. Its early diagnosis increases the chances of a complete cure for the patient. Suitably designed deep learning algorithms can be an excellent tool for quick screening analysis and support radiologists and oncologists in diagnosing breast cancer.The design of a deep learning-based system for automated breast cancer diagnosis is not easy due to the lack of annotated data, especially...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Basics of Deep Learning 24/25

    Kursy Online
    • K. Draszawka

  • Personal bankruptcy prediction using machine learning techniques

    It has become crucial to have an early prediction model that provides accurate assurance for users about the financial situation of consumers. Recent studies have focused on predicting corporate bankruptcies and credit defaults, not personal bankruptcies. Due to this situation, the present study fills the literature gap by comparing different machine learning algorithms to predict personal bankruptcy. The main objective of the...

    Pełny tekst do pobrania w portalu

  • Data, Information, Knowledge, Wisdom Pyramid Concept Revisited in the Context of Deep Learning

    Publikacja

    - Rok 2023

    In this paper, the data, information, knowledge, and wisdom (DIKW) pyramid is revisited in the context of deep learning applied to machine learningbased audio signal processing. A discussion on the DIKW schema is carried out, resulting in a proposal that may supplement the original concept. Parallels between DIWK pertaining to audio processing are presented based on examples of the case studies performed by the author and her collaborators....

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Predicting emotion from color present in images and video excerpts by machine learning

    Publikacja

    This work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...

    Pełny tekst do pobrania w portalu

  • Potential of Explainable Artificial Intelligence in Advancing Renewable Energy: Challenges and Prospects

    Publikacja
    • V. N. N. Nhanh Van
    • W. Tarełko
    • S. Prabhakar
    • A. S. El-Shafay
    • W. Chen
    • P. Q. P. Nguyen
    • N. X. Phuong
    • T. A. Nguyen

    - ENERGY & FUELS - Rok 2024

    Modern machine learning (ML) techniques are making inroads in every aspect of renewable energy for optimizationand model prediction. The effective utilization of ML techniques for the development and scaling up of renewable energy systemsneeds a high degree of accountability. However, most of the ML approaches currently in use are termed black box since their work isdifficult to comprehend. Explainable artificial intelligence (XAI)...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series

    Publikacja
    • T. T. Le
    • P. Sharma
    • S. M. Osman
    • M. Dzida
    • P. Q. P. Nguyen
    • M. H. Tran
    • D. N. Cao
    • V. D. Tran

    - Clean Technologies and Environmental Policy - Rok 2024

    This study assessed the usefulness of algorithms in estimating energy consumption and carbon dioxide emissions in Viet- nam, in which the training dataset was used to train the models linear regression, random forest, XGBoost, and AdaBoost, allowing them to comprehend the patterns and relationships between population, GDP, and carbon dioxide emissions, energy consumption. The results revealed that random forest, XGBoost, and AdaBoost...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data

    Publikacja

    - Rok 2024

    This paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance

    Publikacja

    - Procedia Computer Science - Rok 2021

    Machine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience...

    Pełny tekst do pobrania w portalu

  • Process of Medical Dataset Construction for Machine Learning-Multifield Study and Guidelines

    Publikacja

    The acquisition of high-quality data and annotations is essential for the training of efficient machine learning algorithms, while being an expensive and time-consuming process. Although the process of data processing and training and testing of machine learning models is well studied and considered in the literature, the actual procedures of obtaining data and their annotations in collaboration with physicians are in most cases...

  • Exploration of the Solubility Hyperspace of Selected Active Pharmaceutical Ingredients in Choline- and Betaine-Based Deep Eutectic Solvents: Machine Learning Modeling and Experimental Validation

    Publikacja

    - MOLECULES - Rok 2024

    Deep eutectic solvents (DESs) are popular green media used for various industrial, pharmaceutical, and biomedical applications. However, the possible compositions of eutectic systems are so numerous that it is impossible to study all of them experimentally. To remedy this limitation, the solubility landscape of selected active pharmaceutical ingredients (APIs) in choline chloride- and betaine-based deep eutectic solvents was...

    Pełny tekst do pobrania w portalu

  • Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen

    Publikacja

    - MOLECULES - Rok 2024

    Deep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...

    Pełny tekst do pobrania w portalu

  • Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen

    Publikacja
    • P. Cysewski
    • T. Jeliński
    • M. Przybyłek
    • A. Mai
    • J. Kułak

    - MOLECULES - Rok 2024

    Deep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...

    Pełny tekst do pobrania w portalu

  • MACHINE LEARNING APPLICATIONS IN RECOGNIZING HUMAN EMOTIONS BASED ON THE EEG

    Publikacja
    • A. Kastrau
    • M. Koronowski
    • M. Liksza
    • P. Jasik

    - Rok 2021

    This study examined the machine learning-based approach allowing the recognition of human emotional states with the use of EEG signals. After a short introduction to the fundamentals of electroencephalography and neural oscillations, the two-dimensional valence-arousal Russell’s model of emotion was described. Next, we present the assumptions of the performed EEG experiment. Detail aspects of the data sanitization including preprocessing,...

  • Trustworthy Applications of ML Algorithms in Medicine - Discussion and Preliminary Results for a Problem of Small Vessels Disease Diagnosis.

    Publikacja

    - Rok 2022

    ML algorithms are very effective tools for medical data analyzing, especially at image recognition. Although they cannot be considered as a stand-alone diagnostic tool, because it is a black-box, it can certainly be a medical support that minimize negative effect of human-factors. In high-risk domains, not only the correct diagnosis is important, but also the reasoning behind it. Therefore, it is important to focus on trustworthiness...

    Pełny tekst do pobrania w portalu

  • Channel State Estimation in LTE-Based Heterogenous Networks Using Deep Learning

    Following the continuous development of the information technology, the concept of dense urban networks has evolved as well. The powerful tools, like machine learning, break new ground in smart network and interface design. In this paper the concept of using deep learning for estimating the radio channel parameters of the LTE (Long Term Evolution) radio interface is presented. It was proved that the deep learning approach provides...

    Pełny tekst do pobrania w portalu