Wyniki wyszukiwania dla: neural architecture search - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: neural architecture search

Wyniki wyszukiwania dla: neural architecture search

  • Neural Architecture Search for Skin Lesion Classification

    Deep neural networks have achieved great success in many domains. However, successful deployment of such systems is determined by proper manual selection of the neural architecture. This is a tedious and time-consuming process that requires expert knowledge. Different tasks need very different architectures to obtain satisfactory results. The group of methods called the neural architecture search (NAS) helps to find effective architecture...

    Pełny tekst do pobrania w portalu

  • Deep neural network architecture search using network morphism

    The paper presents the results of the research on neural architecture search (NAS) algorithm. We utilized the hill climbing algorithm to search for well-performing structures of deep convolutional neural network. Moreover, we used the function preserving transformations which enabled the effective operation of the algorithm in a short period of time. The network obtained with the advantage of NAS was validated on skin lesion classification...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • In Search of Naval Beauty. Historical Study of Ship Architecture

    Publikacja

    - Rok 2018

    Designing ships is no mean achievement. In the old days, constructors focused on making their ships visually appealing, while paying scant regard to the living conditions of the crew. Such an approach reflected the state of the art in ship building at the time as well as the social order prevalent in those days. A breakthrough came no earlier than at the turn of the 19th / 20th centuries. The industrial revolution brought along...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • The impact of the AC922 Architecture on Performance of Deep Neural Network Training

    Publikacja

    - Rok 2020

    Practical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes

    A problem related to the development of algorithms designed to find the structure of artificial neural network used for behavioural (black-box) modelling of selected dynamic processes has been addressed in this paper. The research has included four original proposals of algorithms dedicated to neural network architecture search. Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and...

    Pełny tekst do pobrania w portalu

  • Neural network based control system architecture proposal for underwatership hull cleaning robot.

    Publikacja

    - Rok 2003

    Przedstawiono model matematyczny podwodnej głowicy roboczej, oraz określono metodę jej pozycjonowania i orientacji w lokalnym środowisku. Zaproponowano architekturę układu sterowania, opartego na bazie sieci neuronowych, za pomocą którego można sterować podwodnym robotem, przeznaczonym do czyszczenia burt statku.

  • MODERNIST, 1920S AND 1930S INDUSTRIAL ARCHITECTURE OF THE PORT OF GDYNIA - IN SEARCH OF AN AESTHETIC LANGUAGE FOR UTILITARIAN BUILDINGS OF THE POLISH GATEWAY TO THE WORLD

    Publikacja

    - Rok 2016

    The purpose of the article is to present the results of the research on the aspects of the Port of Gdynia modernist architecture aesthetics. Its construction was one of the two major projects carried out in the interwar period in Poland. In the course of analyses it has been attempted to answer the question whether an individual aesthetic language has been created in the 1920s and 1930s for the industrial architecture of the Polish...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Neural Network Subgraphs Correlation with Trained Model Accuracy

    Publikacja

    - Rok 2020

    Neural Architecture Search (NAS) is a computationally demanding process of finding optimal neural network architecture for a given task. Conceptually, NAS comprises applying a search strategy on a predefined search space accompanied by a performance evaluation method. The design of search space alone is expected to substantially impact NAS efficiency. We consider neural networks as graphs and find a correlation between the presence...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks

    In this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....

    Pełny tekst do pobrania w portalu

  • Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition

    Publikacja

    - Gazi University Journal of Science - Rok 2022

    Predictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Efkleidis Katsaros

    Osoby

    Efklidis Katsaros received the B.Sc. degree in mathematics from the Aristotle University of Thessaloniki, Greece, in 2016, and the M.Sc. degree (cum laude) in data science: statistical science from Leiden University, The Netherlands, in 2019. He is currently pursuing the Ph.D. degree in deep video multi-task learning with the Department of Biomedical Engineering, Gdańsk University of Technology, Poland. Since 2020, he has been...

  • Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia

    Publikacja

    - Rok 2024

    W pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...

    Pełny tekst do pobrania w portalu

  • Accurate Lightweight Calibration Methods for Mobile Low-Cost Particulate Matter Sensors

    Publikacja

    - Rok 2023

    Monitoring air pollution is a critical step towards improving public health, particularly when it comes to identifying the primary air pollutants that can have an impact on human health. Among these pollutants, particulate matter (PM) with a diameter of up to 2.5 μ m (or PM2.5) is of particular concern, making it important to continuously and accurately monitor pollution related to PM. The emergence of mobile low-cost PM sensors...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • The Application of the IODA Document Architecture to Music Data

    Publikacja

    - Rok 2014

    This paper is concerned with storing music data with the use of document architecture called Interactive Open Document Architecture (IODA). This architecture makes it possible to create documents which are executable, mobile, interactive and intelligent. Such documents consist of many files that are semantically related to each other. Semantic links are defined in XML files which are a part of a document. IODA documents with music...

  • Harmony Search for Data Mining with Big Data

    Publikacja

    - Rok 2016

    In this paper, some harmony search algorithms have been proposed for data mining with big data. Three areas of big data processing have been studied to apply new metaheuristics. The first problem is related to MapReduce architecture that can be supported by a team of harmony search agents in grid infrastructure. The second dilemma involves development of harmony search in preprocessing of data series before data mining. Moreover,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Fast Approximate String Search for Wikification

    Publikacja

    The paper presents a novel method for fast approximate string search based on neural distance metrics embeddings. Our research is focused primarily on applying the proposed method for entity retrieval in the Wikification process, which is similar to edit distance-based similarity search on the typical dictionary. The proposed method has been compared with symmetric delete spelling correction algorithm and proven to be more efficient...

    Pełny tekst do pobrania w portalu

  • Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio

    Publikacja

    - IEEE INTELLIGENT SYSTEMS - Rok 2024

    The purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Neural Approximators for Variable-Order Fractional Calculus Operators (VO-FC)

    Publikacja

    - IEEE Access - Rok 2022

    The paper presents research on the approximation of variable-order fractional operators by recurrent neural networks. The research focuses on two basic variable-order fractional operators, i.e., integrator and differentiator. The study includes variations of the order of each fractional operator. The recurrent neural network architecture based on GRU (Gated Recurrent Unit) cells functioned as a neural approximation for selected...

    Pełny tekst do pobrania w portalu

  • OBTAINING FLUID FLOW PATTERN FOR TURBINE STAGE WITH NEURAL MODEL.

    Publikacja

    In the paper possibility of applying neural model to obtaining patterns of proper operation for fluid flow in turbine stage for fluid-flow diagnostics is discussed. Main differences between Computational Fluid Dynamics (CFD) solvers and neural model is given, also limitations and advantages of both are considered. Time of calculations of both methods was given, also possibilities of shortening that time with preserving the accuracy...

    Pełny tekst do pobrania w portalu

  • A Simple Neural Network for Collision Detection of Collaborative Robots

    Publikacja

    Due to the epidemic threat, more and more companies decide to automate their production lines. Given the lack of adequate security or space, in most cases, such companies cannot use classic production robots. The solution to this problem is the use of collaborative robots (cobots). However, the required equipment (force sensors) or alternative methods of detecting a threat to humans are usually quite expensive. The article presents...

    Pełny tekst do pobrania w portalu

  • ARRIERE-GARDE IN ARCHITECTURE, AS A RESPONSE TO POST-POSTMODERN REALITY

    Publikacja

    - Rok 2016

    The article presents a general discussion on the direction of contemporary architecture. We can freely speak that postmodernity, understood in its philosophical core as a search for meaning in architecture, as a strategy of building our environment is over. What comes next? Some say, from lack of better naming, that we live in post-postmodern times. Term post-postmodernity is a call for new strategy of shaping our societies and...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Neural modelling of dynamic systems with time delays based on an adjusted NEAT algorithm

    Publikacja

    A problem related to the development of an algorithm designed to find an architecture of artificial neural network used for black-box modelling of dynamic systems with time delays has been addressed in this paper. The proposed algorithm is based on a well-known NeuroEvolution of Augmenting Topologies (NEAT) algorithm. The NEAT algorithm has been adjusted by allowing additional connections within an artificial neural network and...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Neural network model of ship magnetic signature for different measurement depths

    Publikacja

    This paper presents the development of a model of a corvette-type ship’s magnetic signature using an artificial neural network (ANN). The capabilities of ANNs to learn complex relationships between the vessel’s characteristics and the magnetic field at different depths are proposed as an alternative to a multi-dipole model. A training dataset, consisting of signatures prepared in finite element method (FEM) environment Simulia...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Spectral Clustering Wikipedia Keyword-Based search Results

    The paper summarizes our research in the area of unsupervised categorization of Wikipedia articles. As a practical result of our research, we present an application of spectral clustering algorithm used for grouping Wikipedia search results. The main contribution of the paper is a representation method for Wikipedia articles that has been based on combination of words and links and used for categoriation of search results in this...

    Pełny tekst do pobrania w portalu

  • Decision making process using deep learning

    Publikacja

    - Rok 2019

    Endüstri 4.0, dördüncü endüstri devrimi veya Endüstriyel Nesnelerin İnterneti (IIoT) olarak adlandırılan sanayi akımı, işletmelere, daha verimli, daha büyük bir esneklikle, daha güvenli ve daha çevre dostu bir şekilde üretim yapma imkanı sunmaktadır. Nesnelerin İnterneti ile bağlantılı yeni teknoloji ve hizmetler birçok endüstriyel uygulamada devrim niteliği taşımaktadır. Fabrikalardaki otomasyon, tahminleyici bakım (PdM – Predictive...

  • New Two-center Ellipsoidal Basis Function Neural Network for Fault Diagnosis of Analog Electronic Circuits

    In the paper a new fault diagnosis-oriented neural network and a diagnostic method for localization of parametric faults in Analog Electronic Circuits (AECs) with tolerances is presented. The method belongs to the class of dictionary Simulation Before Test (SBT) methods. It utilizes dictionary fault signatures as a family of identification curves dispersed around nominal positions by component tolerances of the Circuit Under Test...

  • Deep Learning Basics 2023/24

    Kursy Online
    • K. Draszawka

    A course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.

  • Neural network based algorithm for hand gesture detection in a low-cost microprocessor applications

    In this paper the simple architecture of neural network for hand gesture classification was presented. The network classifies the previously calculated parameters of EMG signals. The main goal of this project was to develop simple solution that is not computationally complex and can be implemented on microprocessors in low-cost 3D printed prosthetic arms. As the part of conducted research the data set EMG signals corresponding...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Bees Detection on Images: Study of Different Color Models for Neural Networks

    Publikacja

    This paper presents an approach to bee detection in video streams using a neural network classifier. We describe the motivation for our research and the methodology of data acquisition. The main contribution to this work is a comparison of different color models used as an input format for a feedforward convolutional architecture applied to bee detection. The detection process has is based on a neural binary classifier that classifies...

    Pełny tekst do pobrania w portalu

  • Applying artificial neural networks for modelling ship speed and fuel consumption

    Publikacja

    This paper deals with modelling ship speed and fuel consumption using artificial neural network (ANN) techniques. These tools allowed us to develop ANN models that can be used for predicting both the fuel consumption and the travel time to the destination for commanded outputs (the ship driveline shaft speed and the propeller pitch) selected by the ship operator. In these cases, due to variable environmental conditions, making...

    Pełny tekst do pobrania w portalu

  • Emotion Recognition from Physiological Channels Using Graph Neural Network

    In recent years, a number of new research papers have emerged on the application of neural networks in affective computing. One of the newest trends observed is the utilization of graph neural networks (GNNs) to recognize emotions. The study presented in the paper follows this trend. Within the work, GraphSleepNet (a GNN for classifying the stages of sleep) was adjusted for emotion recognition and validated for this purpose. The...

    Pełny tekst do pobrania w portalu

  • 1D convolutional context-aware architectures for acoustic sensing and recognition of passing vehicle type

    Publikacja

    A network architecture that may be employed to sensing and recognition of a type of vehicle on the basis of audio recordings made in the proximity of a road is proposed in the paper. The analyzed road traffic consists of both passenger cars and heavier vehicles. Excerpts from recordings that do not contain vehicles passing sounds are also taken into account and marked as ones containing silence....

  • Categorization of emotions in dog behavior based on the deep neural network

    The aim of this article is to present a neural system based on stock architecture for recognizing emotional behavior in dogs. Our considerations are inspired by the original work of Franzoni et al. on recognizing dog emotions. An appropriate set of photographic data has been compiled taking into account five classes of emotional behavior in dogs of one breed, including joy, anger, licking, yawning, and sleeping. Focusing on a particular...

    Pełny tekst do pobrania w portalu

  • Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation

    This paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...

    Pełny tekst do pobrania w portalu

  • Self Organizing Maps for Visualization of Categories

    Publikacja

    - Rok 2012

    Visualization of Wikipedia categories using Self Organizing Mapsshows an overview of categories and their relations, helping to narrow down search domains. Selecting particular neurons this approach enables retrieval of conceptually similar categories. Evaluation of neural activations indicates that they form coherent patterns that may be useful for building user interfaces for navigation over category structures.

  • Recognition of Emotions in Speech Using Convolutional Neural Networks on Different Datasets

    Artificial Neural Network (ANN) models, specifically Convolutional Neural Networks (CNN), were applied to extract emotions based on spectrograms and mel-spectrograms. This study uses spectrograms and mel-spectrograms to investigate which feature extraction method better represents emotions and how big the differences in efficiency are in this context. The conducted studies demonstrated that mel-spectrograms are a better-suited...

    Pełny tekst do pobrania w portalu

  • Towards bees detection on images: study of different color models for neural networks

    Publikacja

    This paper presents an approach to bee detection in videostreams using a neural network classifier. We describe the motivationfor our research and the methodology of data acquisition. The maincontribution to this work is a comparison of different color models usedas an input format for a feedforward convolutional architecture appliedto bee detection. The detection process has is based on a neural...

  • Case Study NEB Atlas / part I - 3D Models / Brunnshög, Lund

    Dane Badawcze
    open access

    The data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to create a digital model - a simplified digital twin - for selected parts of housing estates already realised in various cities in Europe. This group presents a model for a fragment of the Brunnshög district in Lund, Sweden....

  • Architectural Modifications to Enhance Steganalysis with Convolutional Neural Networks

    Publikacja

    This paper investigates the impact of various modifications introduced to current state-of-the-art Convolutional Neural Network (CNN) architectures specifically designed for the steganalysis of digital images. Usage of deep learning methods has consistently demonstrated improved results in this field over the past few years, primarily due to the development of newer architectures with higher classification accuracy compared to...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model

    Publikacja

    This work attempts to meet the challenges associated with the classification of LIDAR point clouds by means of deep learning. In addition to achieving high accuracy, the designed system should allow the classification of point clouds covering an area of several dozen square kilometers within a reasonable time interval. Therefore, it must be characterized by fast processing and efficient use of memory. Thus, the most popular approaches...

    Pełny tekst do pobrania w portalu

  • Constrained aerodynamic shape optimization using neural networks and sequential sampling

    Publikacja

    - Rok 2023

    Aerodynamic shape optimization (ASO) involves computational fluid dynamics (CFD)-based search for an optimal aerodynamic shape such as airfoils and wings. Gradient-based optimization (GBO) with adjoints can be used efficiently to solve ASO problems with many design variables, but problems with many constraints can still be challenging. The recently created efficient global optimization algorithm with neural network (NN)-based prediction...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Deep neural networks for human pose estimation from a very low resolution depth image

    The work presented in the paper is dedicated to determining and evaluating the most efficient neural network architecture applied as a multiple regression network localizing human body joints in 3D space based on a single low resolution depth image. The main challenge was to deal with a noisy and coarse representation of the human body, as observed by a depth sensor from a large distance, and to achieve high localization precision....

    Pełny tekst do pobrania w portalu

  • Spatiotemporal Assessment of Satellite Image Time Series for Land Cover Classification Using Deep Learning Techniques: A Case Study of Reunion Island, France

    Publikacja
    • N. N. Navnath
    • K. Chandrasekaran
    • A. Stateczny
    • V. M. Sundaram
    • P. Panneer

    - Remote Sensing - Rok 2022

    Current Earth observation systems generate massive amounts of satellite image time series to keep track of geographical areas over time to monitor and identify environmental and climate change. Efficiently analyzing such data remains an unresolved issue in remote sensing. In classifying land cover, utilizing SITS rather than one image might benefit differentiating across classes because of their varied temporal patterns. The aim...

    Pełny tekst do pobrania w portalu

  • Open-Set Speaker Identification Using Closed-Set Pretrained Embeddings

    Publikacja

    - Rok 2022

    The paper proposes an approach for extending deep neural networks-based solutions to closed-set speaker identification toward the open-set problem. The idea is built on the characteristics of deep neural networks trained for the classification tasks, where there is a layer consisting of a set of deep features extracted from the analyzed inputs. By extracting this vector and performing anomaly detection against the set of known...

    Pełny tekst do pobrania w portalu

  • A new multi-process collaborative architecture for time series classification

    Publikacja

    - KNOWLEDGE-BASED SYSTEMS - Rok 2021

    Time series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...

    Pełny tekst do pobrania w portalu

  • Satellite Image Classification Using a Hierarchical Ensemble Learning and Correlation Coefficient-Based Gravitational Search Algorithm

    Publikacja
    • K. Thiagarajan
    • M. Manapakkam Anandan
    • A. Stateczny
    • P. Bidare Divakarachari
    • H. Kivudujogappa Lingappa

    - Remote Sensing - Rok 2021

    Satellite image classification is widely used in various real-time applications, such as the military, geospatial surveys, surveillance and environmental monitoring. Therefore, the effective classification of satellite images is required to improve classification accuracy. In this paper, the combination of Hierarchical Framework and Ensemble Learning (HFEL) and optimal feature selection is proposed for the precise identification...

    Pełny tekst do pobrania w portalu

  • Deep learning for recommending subscription-limited documents

    Publikacja

    Documents recommendation for a commercial, subscription-based online platform is important due to the difficulty in navigation through a large volume and diversity of content available to clients. However, this is also a challenging task due to the number of new documents added every day and decreasing relevance of older contents. To solve this problem, we propose deep neural network architecture that combines autoencoder with...

    Pełny tekst do pobrania w portalu

  • Machine Learning Techniques in Concrete Mix Design

    Concrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which...

    Pełny tekst do pobrania w portalu

  • Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics

    Publikacja

    - Rok 2020

    Remote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...

    Pełny tekst do pobrania w portalu

  • Use of Daylight and Aesthetic Image of Glass Facades in Contemporary Buildings

    Publikacja

    The paper deals with the architecture of contemporary buildings in respect to their aesthetic image created by the use of natural light. Sustainability is regarded as a principle of contemporary architecture, where daylighting is an important factor as it affects energy consumption and environmental quality of the space inside a building. Environmental awareness of architecture, however, involves a much wider and more holistic...

    Pełny tekst do pobrania w portalu