Wyniki wyszukiwania dla: uczenie maszynowe - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: uczenie maszynowe

Wyniki wyszukiwania dla: uczenie maszynowe

  • Uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych

    Publikacja

    - Współczesna Gospodarka - Rok 2017

    W pracy omówiono uczenie maszynowe do samoorganizacji systemów rozproszonych w zastosowaniach gospodarczych ze szczególnym uwzględnieniem sieci neuronowych do predykcji finansowych oraz szacowania ratingu przedsiębiorstw. Oprócz sieci neuronowych, istotną rolę w przygotowaniu i testowaniu informatycznych systemów finansowych może pełnić programowanie genetyczne. Z tego powodu omówiono uczenie maszynowe w aplikacjach konstruowanych...

    Pełny tekst do pobrania w portalu

  • Sztuczna inteligencja i uczenie maszynowe

    Wydarzenia

    27-01-2022 18:00 - 27-01-2022 19:00

    Spotkanie informacyjne dotyczące studiów II stopnia na specjalnościach sztuczna inteligencja i uczenie maszynowe na wydziale ETI

  • Uczenie maszynowe (lato 2021/2022)

    Kursy Online
    • S. Zaporowski
    • T. Neumann
    • N. Głowacka
    • J. Rumiński

  • Uczenie maszynowe (lato 2020/2021)

    Kursy Online
    • A. Kurowski
    • E. Katsaros
    • S. Zaporowski
    • T. Neumann
    • N. Głowacka
    • M. Mazur-Milecka
    • J. Rumiński

  • Uczenie maszynowe w badaniach Ziemi - 2022

    Kursy Online
    • T. E. Berezowski
    • Z. Łubniewski

  • 2021/2022 - Uczenie maszynowe o wysokiej wydajności

    Kursy Online
    • T. M. Boiński
    • R. Benke

  • Podstawy uczenie maszynowego lato 2021/2022

    Kursy Online
    • N. Głowacka
    • J. Rumiński

  • Optymalizacja struktur i obliczeń w sieciach neuronowych

    Kursy Online
    • S. Cygert
    • P. Szczuko

    3 semestr studiów II stopnia, kierunek Informatyka, specjalność Uczenie Maszynowe

  • Metody sztucznej inteligencji

    Kursy Online
    • P. Szczuko

    Wprowadzenie do metod stosowanych w uczeniu maszynowym i sztucznej inteligencji. Sposoby parametryzacji danych, budowania modelu, podejmowania decyzji. Specjalność: uczenie maszynowe.

  • Odkrywanie wiedzy i systemy rekomendacyjne

    Kursy Online
    • A. Nabożny
    • A. Karpus

    Przedmiot dla specjalności Uczenie Maszynowe na drugim stopniu studiów stacjonarnych na kierunku Informatyka. Przedmiot finansowany z projektu AI Tech (https://eti.pg.edu.pl/ai-tech).

  • Cykl wykładów o sztucznej inteligencji

    Wydarzenia

    27-01-2022 17:30 - 27-01-2022 20:00

    AI Bay i DIH4.AI zapraszają na seminarium z cyklem wykładów dotyczących wykorzystania sztucznej inteligencji w naukach fizycznych, inżynierii materiałowej, nanotechnologii oraz informatyce kwantowej.

  • Zaawansowane przygotowanie danych w uczeniu maszynowym

    Kursy Online
    • J. Cychnerski

    Kurs wyłączenie dla specjalności "Uczenie Maszynowe" oraz "Sztuczna Inteligencja" kierunku Informatyka na wydziale ETI, realizowanych w projekcie AI Tech. Przedmiotu nie można wybrać jako przedmiot obieralny ani w ramach indywidualnych planów studiów poza powyższymi specjalnościami.

  • Duże zbiory danych w zdalnej diagnostyce medycznej z wykorzystaniem technik głębokiego uczenia,

    Publikacja

    W ostatnim czasie obserwujemy tendencję globalnego starzenia się i znaczących zmian struktur demograficznych na całym świecie. Zgodnie z raportem przedstawionym przez Moody Investors Service, przewiduje się, iż do 2030 roku liczba znacząco-starzejących się krajów wzrośnie z 3 do 34. Światowy proces starzenia się społeczeństw doprowadził do wzrastających oczekiwań wobec starszych osób do pozostania niezależnymi. W związku z tym...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Wynalazek a biznes

    Wydarzenia

    15-06-2022 11:00 - 15-06-2022 12:00

    Jeśli interesujesz się wdrażaniem innowacji na rynek, zapraszamy na dyskusję podczas webinarium organizowanego przez Centra Transferu Technologii Uczelni Fahrenheita (FarU).

  • Jacek Rumiński dr hab. inż.

    Wykształcenie i kariera zawodowa   2016   2002   1995   1991-1995 Habilitacja   Doktor nauk technicznych   Magister inżynier     Politechnika Gdańska, Biocybernetyka i inżyniera biomedyczna, tematyka: „Metody wyodrębniania sygnałów i parametrów z różnomodalnych sekwencji obrazów dla potrzeb diagnostyki i wspomagania osób” Politechnika Gdańska, Wydział Elektroniki, Telekomunikacji i Informatyki (z wyróżnieniem), dyscyplina...

  • Piotr Szczuko dr hab. inż.

    Dr hab. inż. Piotr Szczuko w 2002 roku ukończył studia na Wydziale Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej zdobywając tytuł magistra inżyniera. Tematem pracy dyplomowej było badanie zjawisk jednoczesnej percepcji obrazu cyfrowego i dźwięku dookólnego. W roku 2008 obronił rozprawę doktorską zatytułowaną "Zastosowanie reguł rozmytych w komputerowej animacji postaci", za którą otrzymał nagrodę Prezesa Rady...

  • Krzysztof Cwalina dr inż.

    Krzysztof Cwalina received Ph.D. degree in telecommunication engineering, from Gdansk University of Technology in 2017. He received the M.SC. Eng. degree in telecommunication engineering, from Gdansk University of Technology in 2014. Currently research assistant in the Department of Radiocommunication Systems and Networks. His research interests include WBAN (Wireless Body Area Networks), resource allocation in heterogeneous WBAN,...

  • Ireneusz Czarnowski Prof.

    Osoby

    IRENEUSZ CZARNOWSKI is a graduate of the Faculty of Electrical Engineering at Gdynia Maritime University. He gained a doctoral degree in the field of computer science at Poznan University of Technology and a postdoctoral degree in the field of computer science at Wroclaw University of Science and Technology. Since 1998 is associated with Gdynia Maritime University, currently is a professor of computer science in the Department...

  • Adam Brzeski mgr inż.

  • Michał Czubenko dr inż.

    Michał Czubenko jest absolwentem roku 2009, Wydziału Elektroniki, Telekomunikacji i Informatyki na Politechnice Gdańskiej, w dyscyplinie automatyka i robotyka. Obecnie jest adiunktem na tym samym wydziale, związanym z Katedrą Systemów Decyzji i Robotyki. W 2012 roku odbył trzymiesięczny staż w Kingston University London. Był wiceprzewodniczącym Komitetu Organizacyjnego na 12. Międzynarodowej Konferencji na temat Diagnostyka Procesów...

  • Data-driven models for fault detection using kernel pca:a water distribution system case study

    Kernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection....

    Pełny tekst do pobrania w portalu

  • Kernel PCA in Application to Leakage Detection in Drinking Water Distribution System

    Monitoring plays an important role in advanced control of complex dynamic systems. Precise information about system's behaviour, including faults detection, enables efficient control. Proposed method- Kernel Principal Component Analysis (KPCA), a representative of machine learning, skilfully takes full advantage of the well known PCA method and extends its application to nonlinear case. The paper explains the general idea of KPCA...

  • Modular machine learning system for training object detection algorithms on a supercomputer

    Publikacja

    - Rok 2010

    W pracy zaprezentowano architekturę systemu służącego do tworzenia algorytmów wykorzystujących metodę AdaBoost i służących do wykrywania obiektów (np. twarzy) na obrazach. System został podzielony na wyspecjalizowane moduły w celu umożliwienia łatwej rozbudowy i efektywnego zrównoleglenia implementacji przeznaczonej dla superkomputera. Na przykład, system może być rozszerzony o nowe cechy i algorytmy ich ekstrakcji bez konieczności...

  • Text Documents Classification with Support Vector Machines

    Publikacja
    • P. Majewski

    - Rok 2008

  • Learning and memory processes in autonomous agents using an intelligent system of decision-making

    Publikacja

    This paper analyzes functions and structures of the memory that is an indispensable part of an Intelligent System of Decision-making (ISD), developed as a universal engine for autonomous robotics. A simplified way of processing and coding information in human cognitive processes is modelled and adopted for the use in autonomous systems. Based on such a knowledge structure, an artificial model of reality representation and a model...

    Pełny tekst do pobrania w portalu

  • Zastosowanie głębokiego uczenia do określania warunków LOS/NLOS w ultraszerokopasmowych radiowych sieciach WBAN

    W niniejszym artykule przedstawiono zastosowanie głębokiego uczenia do określania warunków bezpośredniej widoczności LOS/NLOS w ultraszerokopasmowych radiowych sieciach WBAN. Zaproponowano głęboką, jednokierunkową sieć neuronową, której efektywność działania sprawdzono na podstawie danych pomiarowych w rzeczywistym wewnątrzbudynkowym środowisku propagacyjnym. Uzyskane wyniki jednoznacznie udowadniają zasadność stosowania zaproponowanej...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Prognozowanie wpływu drgań komunikacyjnych na budynki mieszkalne za pomocą sztucznych sieci neuronowych i maszyn wektorów wspierających

    Publikacja

    Drgania komunikacyjne mogą stanowić duże obciążenie eksploatacyjne budynku, powodując zarysowania i spękania tynków, odpadanie wypraw, zarysowania konstrukcji, pękanie elementów konstrukcji lub nawet zawalenie się budynku. Pomiary drgań na rzeczywistych konstrukcjach są pracochłonne i kosztowne, a co ważne nie w każdym przypadku są one uzasadnione. Celem pracy jest analiza autorskiego algorytmu, dzięki któremu z dużym prawdopodobieństwem...

    Pełny tekst do pobrania w portalu

  • Metody uczenia optymalizacji wieloetapowych procesów decyzyjnych.

    Optymalizacja wieloetapowych procesów decyzyjnych jest zdaniem, w którym zbiegają się metody pochodzące pierwotnie z różnych dziedzin: rachunku wariacyjnego, algorytmów optymalizacji i metod uczenia maszynowego rozpatrywanych w sztucznej inteligencji. W niniejszej pracy podjęto próbę zestawienia różnych metod oraz podano wyniki optymalizacji przykładowego zadania z zastosowaniem algorytmów ewolucyjnych.

  • Evaluation of Facial Pulse Signals Using Deep Neural Net Models

    Publikacja

    - Rok 2019

    The reliable measurement of the pulse rate using remote photoplethysmography (PPG) is very important for many medical applications. In this paper we present how deep neural networks (DNNs) models can be used in the problem of PPG signal classification and pulse rate estimation. In particular, we show that the DNN-based classification results correspond to parameters describing the PPG signals (e.g. peak energy in the frequency...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Optymalizacja treningu i wnioskowania sieci neuronowych

    Sieci neuronowe są jedną z najpopularniejszych i najszybciej rozwijających się dziedzin sztucznej inteligencji. Ich praktyczne wykorzystanie umożliwiło szersze użycie komputerów w wielu obszarach komunikacji, przemysłu i transportu. Dowody tego są widoczne w elektronice użytkowej, medycynie, a nawet w zastosowaniach militarnych. Wykorzystanie sztucznej inteligencji w wielu przypadkach wymaga jednak znacznej mocy obliczeniowej,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • SYSTEMY BEZDOTYKOWEJ OCENY PARAMETRÓW ŻYCIOWYCH

    Publikacja

    - Rok 2019

    W rozdziale przedstawiono metody ekstrakcji sygnałów biomedycznych i parametrów medycznych z wideo twarzy. W szczególności omówiono metody pozyskiwania pulsu w wideo uzyskiwanego w zakresie widzialnym oraz parametrów oddychania z zapisów sekwencji obrazów termograficznych.

  • AUTOMATYCZNE GENEROWANIE KOLEJNOŚCI LIST UTWORÓW MUZYCZNYCH

    Publikacja

    - Rok 2022

    W niniejszym rozdziale przedstawiono przygotowanie algorytmu do automa-tycznego układania kolejności utworów muzycznych i zgrywającego je do postaci jednego, długiego miksu. Dzięki algorytmowi dobierane są utwory na podstawie analizy podobieństwa fragmentów końcowych i początkowych utworów. Podo-bieństwo to jest obliczane za pomocą odległości euklidesowej między wektorami parametrów wyznaczonymi przez autoenkoder oraz na podstawie...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Odwzorowanie właściwości energetycznych silników spalinowych pojazdów użytkowych z wykorzystaniem pomiarów trakcyjnych

    Publikacja

    - Rok 2021

    Przedmiotem rozprawy jest odwzorowanie właściwości energetycznych sinika spalinowego z wykorzystaniem danych pomiarowych, uzyskanych podczas bieżącej eksploatacji pojazdu użytkowego. W pierwszej części pracy omówione zostały podstawy działania pojazdów użytkowych oraz występowanie stanów statycznych i dynamicznych podczas rzeczywistej eksploatacji silnika. Następnie omówiono metody odwzorowania charakterystyk silnika spalinowego....

    Pełny tekst do pobrania w portalu

  • System wieloagentowy wspomagający projektowanie wybranych układów sterowania okrętowych podsystemów elektroenergetycznych

    Publikacja

    - Rok 2019

    W rozprawie doktorskiej zaproponowano system wieloagentowy do wspomagania projektowana okrętowych podsystemów elektroenergetycznych. Utworzony system składa się z agentów interfejsu, agenta nadrzędnego, agentów symulacyjnych agentów decyzyjnych, które poprzez realizację wewnętrznych algorytmów oraz wzajemną komunikację rozwiązują wybrane zadania projektowe w zakresie doboru odpowiedniej struktury i elementów składowych podsystemów...

    Pełny tekst do pobrania w portalu

  • Analiza zależności muzyczno-graficznej okładek albumów z użyciem algorytmów uczących się

    Publikacja

    - Rok 2021

    Celem rozprawy jest analiza zależności muzyczno-graficznej okładek albumów z użyciem algorytmów uczących się. Brane są pod uwagę parametry badanych gatunków muzycznych, zależności pomiędzy gatunkami muzycznymi a typami osobowości, jak również cechy okładek albumów muzycznych i ich korelacje z gatunkami muzycznymi. Opracowana metodologia jest wykorzystana w celu sprawdzenia możliwości automatycznej klasyfikacji gatunku muzycznego...

    Pełny tekst do pobrania w portalu

  • Playback detection using machine learning with spectrogram features approach

    Publikacja

    This paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...

    Pełny tekst do pobrania w portalu

  • Analiza możliwości automatycznego rozpoznawania zachowań zwierząt doświadczalnych

    Publikacja

    - Rok 2021

    Automatyzacja analizy zachowań zwierząt laboratoryjnych umożliwia szybką i obiektywną ocenę obserwacji. Rozwiązania w istniejących systemach skupiają się na detekcji prostych aspektów zachowań, która jest możliwa dzięki pomiarowi parametrów motorycznych zwierząt, ich punktów charakterystycznych czy kształtu ciała. Jednym z istotnych problemów w dziedzinie rozpoznania zachowań są zachowania złożone, dla których trudno jest zdefiniować...

    Pełny tekst do pobrania w portalu

  • IFE: NN-aided Instantaneous Pitch Estimation

    Publikacja

    Pitch estimation is still an open issue in contemporary signal processing research. Nowadays, growing momentum of machine learning techniques application in the data-driven society allows for tackling this problem from a new perspective. This work leverages such an opportunity to propose a refined Instantaneous Frequency and power based pitch Estimator method called IFE. It incorporates deep neural network based pitch estimation...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Rola i techniki eksploracji w uczeniu przez wzmacnianie

    Publikacja

    - Rok 2021

    W rozdziale podjęto rozważania na temat roli eksploracji w uczeniu się agentów sztucznej inteligencji przez wzmacnianie. Prezentuje przegląd współczesnych technik eksploracji i rozróżnia dwie główne rodziny technik: eksplorację nieukierunkowaną i eksplorację ukierunkowaną. Praca ta powinna pomóc zrozumieć dylemat pomiędzy eksploatacją wiedzy a eksploracją środowiska, któremu poddany jest agent w każdym kroku interakcji ze środowiskiem....

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Learning and memory processes in autonomous agents using an intelligent system of decision-making

    Publikacja

    This paper analyzes functions and structures of the memory that is an indispensable part of an Intelligent System of Decision-making (ISD), developed as a universal engine for autonomous robotics. A simplified way of processing and coding information in human cognitive processes is modelled and adopted for the use in autonomous systems. Based on such a knowledge structure, an artificial model of reality representation and a model...

  • Rozpoznawanie statycznych i dynamicznych gestów dłoni z zastosowaniem adaptacyjnego czujnika optycznego

    Publikacja

    - Rok 2018

    Bezdotykowe interfejsy urządzeń stacjonarnych oraz urządzeń mobilnych są ważne zwłaszcza w ochronie zdrowia (np. przeciwdziałanie roznoszeniu bakterii i wirusów, wsparcie chirurga w trakcie przeprowadzania operacji itp.). W ramach rozprawy doktorskiej zaprojektowano i wykonano oszczędny energetycznie czujnik gestów o budowie liniowej, złożony z fotodiod i diod LED, wraz z dedykowanym mu...

    Pełny tekst do pobrania w portalu

  • Sztuczna inteligencja - oksymoron czy oczywistość?

    Publikacja

    - Rok 2018

    W artykule przedstawiono historię powstania i rozwoju sztucznej inteligencji, jej główne obszary badawcze i perspektywy. Szczególną uwagę poświęcono uczeniu maszynowemu jako głównemu obszarowi badań naukowych. Sformułowano i skomentowano hipotezy dotyczące perspektyw sztucznej inteligencji.

    Pełny tekst do pobrania w portalu

  • Wykorzystanie sieci neuronowych do syntezy mowy wyrażającej emocje

    Publikacja

    - Rok 2019

    W niniejszym artykule przedstawiono analizę rozwiązań do rozpoznawania emocji opratych na mowie i możliwości ich wykprzystania w syntezie mowy z emocjami stosując do tego celu sieci neuronowe. Wskazano również przydatnośc parametrów typowo stosowanych do rozpoznawania mowy w detekcji emocji w śpiewie i rozróżnianiu tych emocji w obu przypadkach. Przedstawiono aktualne rozwiązania dotyczące rozpoznawania emocji w mowie i metod syntezy...

  • Elementy uczenia maszynowego na zajęciach matematyki

    W artykule omówiono związki między matematyką kursową a wybranymi zagadnieniami związanymi z uczeniem maszynowym. Pokazano w jaki sposób proste operacje na macierzach pomagają serwisom VOD w rekomendacji tytułów filmowych zgodnych z zainteresowaniami użytkowników na podstawie ich wcześniejszych wyborów. Zaprezentowano również uproszczoną wersję algorytmu regresji wielorakiej stosowaną do wyceny nieruchomości oraz wspomniano...

    Pełny tekst do pobrania w portalu

  • Jan Cudzik dr inż. arch.

    Jan Cudzik (dr inż. arch.) jest adiunktem w Katedrze Architektury Miasta i Przestrzeni Nadwodnych oraz Kierownikiem Laboratorium Cyfrowych Technologii. Obecnie prowadzi badania naukowe dotyczące między innymi architektury kinematycznej, cyfrowych technik wspomagających projektowanie architektoniczne, cyfrowej fabrykacji, form sztucznej inteligencji w architekturze i sztuce. Jego teksty ukazują się w publikacjach polskich i zagranicznych,...

  • Agnieszka Mikołajczyk mgr inż.

  • Adam Wawrzyński

    Osoby

  • Adrian Kastrau mgr inż.

    Osoby