Publikacje
Filtry
wszystkich: 377
Katalog Publikacji
Rok 2019
-
On the super domination number of lexicographic product graphs
PublikacjaThe neighbourhood of a vertexvof a graphGis the setN(v) of all verticesadjacent tovinG. ForD⊆V(G) we defineD=V(G)\D. A setD⊆V(G) is called a super dominating set if for every vertexu∈D, there existsv∈Dsuch thatN(v)∩D={u}. The super domination number ofGis theminimum cardinality among all super dominating sets inG. In this article weobtain closed formulas and tight bounds for the super dominating number oflexicographic product...
-
Oriented Gaussian beams for high-accuracy computation with accuracy control of X-ray propagation through a multi-lens system
PublikacjaA highly accurate method for calculating X-ray propagation is developed. Within this approach, the propagating wave is represented as a superposition of oriented Gaussian beams. The direction of wave propagation in each Gaussian beam agrees with the local direction of propagation of the X-ray wavefront. When calculating the propagation of X-ray waves through lenses, the thin lens approximation is applied. In this approximation,...
-
Periodic expansion in determining minimal sets of Lefschetz periods for Morse–Smale diffeomorphisms
PublikacjaWe apply the representation of Lefschetz numbers of iterates in the form of periodic expansion to determine the minimal sets of Lefschetz periods of Morse–Smale diffeomorphisms. Applying this approach we present an algorithmic method of finding the family of minimal sets of Lefschetz periods for Ng, a non-orientable compact surfaces without boundary of genus g. We also partially confirm the conjecture of Llibre and Sirvent (J Diff...
-
Periodic Points for Sphere Maps Preserving MonopoleFoliations
PublikacjaLet S^2 be a two-dimensional sphere. We consider two types of its foliations with one singularity and maps f:S^2→S^2 preserving these foliations, more and less regular. We prove that in both cases f has at least |deg(f)| fixed points, where deg(f) is a topological degree of f. In particular, the lower growth rate of the number of fixed points of the iterations of f is at least log|deg(f)|. This confirms the Shub’s conjecture in...
-
Subharmonic solutions for a class of Lagrangian systems
PublikacjaWe prove that second order Hamiltonian systems with a potential of class C1, periodic in time and superquadratic at infinity with respect to the space variable have subharmonic solutions. Our intention is to generalise a result on subharmonics for Hamiltonian systems with a potential satisfying the global Ambrosetti-Rabinowitz condition from [P. H. Rabinowitz, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 33-38]. Indeed, we weaken...
-
The E-Cohomological Conley Index, Cup-Lengths and the Arnold Conjecture on T 2n
PublikacjaWe show that the E-cohomological Conley index, that was introduced by the first author recently, has a natural module structure. This yields a new cup-length and a lower bound for the number of critical points of functionals on Hilbert spaces. When applied to the setting of the Arnold conjecture, this paves the way to a short proof on tori, where it was first shown by C. Conley and E. Zehnder in 1983.
-
The Maslov index and the spectral flow—revisited
PublikacjaWe give an elementary proof of a celebrated theorem of Cappell, Lee and Miller which relates the Maslov index of a pair of paths of Lagrangian subspaces to the spectral flow of an associated path of self-adjoint first-order operators. We particularly pay attention to the continuity of the latter path of operators, where we consider the gap-metric on the set of all closed operators on a Hilbert space. Finally, we obtain from Cappell,...
-
The saga of a fish: from a survival guide to closing lemmas
PublikacjaIn the paper by D. Burago, S. Ivanov and A. Novikov, “A survival guide for feeble fish”, it has been shown that a fish with limited velocity can reach any point in the (possibly unbounded) ocean provided that the fluid velocity field is incompressible, bounded and has vanishing mean drift. This result extends some known global controllability theorems though being substantially nonconstructive. We give a fish a different recipe...
-
Weak Stability of Centred Quadratic Stochastic Operators
PublikacjaWe consider the weak convergence of iterates of so-called centred quadratic stochastic operators. These iterations allow us to study the discrete time evolution of probability distributions of vector-valued traits in populations of inbreeding or hermaphroditic species, whenever the offspring’s trait is equal to an additively perturbed arithmetic mean of the parents’ traits. It is shown that for the existence of a weak limit, it...
-
Weakly connected Roman domination in graphs
PublikacjaA Roman dominating function on a graph G=(V,E) is defined to be a function f :V → {0,1,2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v)=2. A dominating set D⊆V is a weakly connected dominating set of G if the graph (V,E∩(D×V)) is connected. We define a weakly connected Roman dominating function on a graph G to be a Roman dominating function such that the set...
Rok 2018
-
Bifurcation of equilibrium forms of an elastic rod on a two-parameter Winkler foundation
PublikacjaWe consider two-parameter bifurcation of equilibrium states of an elastic rod on a deformable foundation. Our main theorem shows that bifurcation occurs if and only if the linearization of our problem has nontrivial solutions. In fact our proof, based on the concept of the Brouwer degree, gives more, namely that from each bifurcation point there branches off a continuum of solutions.
-
Coronas and Domination Subdivision Number of a Graph
PublikacjaIn this paper, for a graph G and a family of partitions P of vertex neighborhoods of G, we define the general corona G ◦P of G. Among several properties of this new operation, we focus on application general coronas to a new kind of characterization of trees with the domination subdivision number equal to 3.
-
Dynamics of a simplified HPT model in relation to 24h TSH profiles
PublikacjaWe propose a simplified mathematical model of the hypothalamus-pituitary-thyroid (HPT) axis in an endocrine system. The considered model is a modification of the model proposed by Mukhopadhyay and Bhattacharyya in [10]. Our system of delay differential equations reconstructs the HPT axis in relation to 24h profiles of human in physiological conditions. Homeostatic control of the thyroid-pituitary axis is considered by using...
-
Dynamics of Field Line Mappings in Magnetic Flux Tubes
PublikacjaWe study the topological constraints on the dynamics of magnetic field lines in flux tubes. Our approach is based on the application of the topological invariant: fixed point index. We consider periodic flux tubes and find various restrictions on the field lines that come from the sequence of fixed point indices of iterations. We also analyze the case of a tube with a cylindrical obstacle, deducing some special dynamical properties...
-
Fixed point indices of iterates of a low-dimensional diffeomorphism at a fixed point which is an isolated invariant set
PublikacjaLet f be an R^n-diffeomorphism, where n = 2, 3, for which {0} is an isolated invariant set. We determine all possible forms of the sequences of fixed point indices of iterates of f at 0, {ind(f n, 0)}_n, confirming in R3 the conjecture of Ruiz del Portal and Salazar (J Differ Equ 249, 989–1013, 2010).
-
Integrate-and-fire models with an almost periodic input function
PublikacjaWe investigate leaky integrate-and-fire models (LIF models for short) driven by Stepanov and μ-almost periodic functions. Special attention is paid to the properties of the firing map and its displacement, which give information about the spiking behavior of the considered system. We provide conditions under which such maps are well-defined and are uniformly continuous. We show that the LIF models with Stepanov almost periodic...
-
Mathematical analysis of a generalised p53-Mdm2 protein gene expression model
PublikacjaWe propose the generalisation of the p53-Mdm2 protein gene expression model introduced by Monk (2003). We investigate the stability of a unique positive steady state and formulate conditions which guarantee the occurrence of the Hopf bifurcation. We show that oscillatory behaviour can be caused not only by time lag in protein transcription process, but also can be present in the model without time delay. Moreover, we investigate...
-
Prevalence Problem in the Set of Quadratic Stochastic Operators Acting on L1
PublikacjaThis paper is devoted to the study of the problem of prevalence in the class of quadratic stochastic operators acting on the L1 space for the uniform topology. We obtain that the set of norm quasi-mixing quadratic stochastic operators is a dense and open set in the topology induced by a very natural metric. This shows the typical long-term behaviour of iterates of quadratic stochastic operators.
-
Rothe’s method for physiologically structured models with diffusion
PublikacjaWe consider structured population models with diffusion and dynamic boundary conditions. The respective approximation, called Rothe’s method, produces positive and exponentially bounded solutions. Its solutions converge to the exact solution of the original PDE.
-
Shub’s conjecture for smooth longitudinal maps of S^m
PublikacjaLet f be a smooth map of the m-dimensional sphere Sm to itself, preserving the longitudinal foliation. We estimate from below the number of fixed points of the iterates of f , reduce Shub’s conjecture for longitudinal maps to a lower dimensional classical version, and prove the conjecture in case m = 2 and in a weak form for m = 3.
-
Total domination in versus paired-domination in regular graphs
PublikacjaA subset S of vertices of a graph G is a dominating set of G if every vertex not in S has a neighbor in S, while S is a total dominating set of G if every vertex has a neighbor in S. If S is a dominating set with the additional property that the subgraph induced by S contains a perfect matching, then S is a paired-dominating set. The domination number, denoted γ(G), is the minimum cardinality of a dominating set of G, while the...
-
Total Domination Versus Domination in Cubic Graphs
PublikacjaA dominating set in a graph G is a set S of vertices of G such that every vertex not in S has a neighbor in S. Further, if every vertex of G has a neighbor in S, then S is a total dominating set of G. The domination number,γ(G), and total domination number, γ_t(G), are the minimum cardinalities of a dominating set and total dominating set, respectively, in G. The upper domination number, \Gamma(G), and the upper total domination...
Rok 2017
-
A Hopf type theorem for equivariant local maps
PublikacjaWe study otopy classes of equivariant local maps and prove a Hopf type theorem for such maps in the case of a real finite-dimensional orthogonal representation of a compact Lie group.
-
Analysis of a gene expression model
PublikacjaWe study a mathematical model of gene transcription and protein synthesis with negative feedback. We consider a system of equations taking into account the number of active binding sites, the way in which dimers bind to DNA and time delay in translation process. For a simplified model that consist of three ordinary differential equations with time delay we derive conditions for stability of the positive steady state and for the...
-
Anisotropic Orlicz–Sobolev spaces of vector valued functions and Lagrange equations
PublikacjaIn this paper we study some properties of anisotropic Orlicz and Orlicz–Sobolev spaces of vector valued functions for a special class of G-functions. We introduce a variational setting for a class of Lagrangian Systems. We give conditions which ensure that the principal part of variational functional is finitely defined and continuously differentiable on Orlicz–Sobolev space.
-
Asymptotic Expansion Method with Respect to Small Parameter for Ternary Diffusion Models
PublikacjaTernary diffusion models lead to strongly coupled systems of PDEs. We choose the smallest diffusion coefficient as a small parameter in a power series expansion whose components fulfill relatively simple equations. Although this series is divergent, one can use its finite sums to derive feasible numerical approximations, e.g. finite difference methods (FDMs).
-
Convex set of quantum states with positive partial transpose analysed by hit and run algorithm
PublikacjaThe convex set of quantum states of a composite K×K system with positive partial transpose is analysed. A version of the hit and run algorithm is used to generate a sequence of random points covering this set uniformly and an estimation for the convergence speed of the algorithm is derived. For K >3 or K=3 this algorithm works faster than sampling over the entire set of states and verifying whether the partial transpose is positive....
-
Discrete and continuous fractional persistence problems – the positivity property and applications
PublikacjaIn this article, we study the continuous and discrete fractional persistence problem which looks for the persistence of properties of a given classical (α=1) differential equation in the fractional case (here using fractional Caputo’s derivatives) and the numerical scheme which are associated (here with discrete Grünwald–Letnikov derivatives). Our main concerns are positivity, order preserving ,equilibrium points and stability...
-
E-cohomological Conley index
PublikacjaIn this thesis we continue with developing the E-cohomological Conley index which was introduced by A.Abbondandolo. In particular, we generalize the index to non-gradient flows, we show that it an possesses additional multiplicative structure and we prove the continuation principle. Then, using continuation principle, we show how the computation of the E-cohomological Conley index can be reduced to the computation of the classical...
-
GENERAL DYNAMIC PROJECTING OF MAXWELL EQUATIONS
PublikacjaA complete – system of Maxwell equations is splitting into independent subsystems by means of a special dynamic projecting technique. The technique relies upon a direct link between field components that determine correspondent subspaces. The explicit form of links and corresponding subspace evolution equations are obtained in conditions of certain symmetry, it is illustrated by examples of spherical and quasi-one-dimensional waves.
-
Grupa gdańskich topologów
PublikacjaArtykuł o charakterze przeglądowym. Jako rozdział 6 w książce zawiera przegląd najważniejszych rezultatów badawczych uzyskanych przez dużą grupę matematyków związanych z Uniwersytetem i Politechniką Gdańską określanych potocznie grupą topologów, a także uwagi historyczne dotyczące rozwoju tych zespołów. Dołączono i pokrótce omówiono obszerną bibliografię.
-
Homotopy invariance of the Conley index and local Morse homology in Hilbert spaces
PublikacjaIn this paper we introduce a new compactness condition — Property-(C) — for flows in (not necessary locally compact) metric spaces. For such flows a Conley type theory can be developed. For example (regular) index pairs always exist for Property-(C) flows and a Conley index can be defined. An important class of flows satisfying the this compactness condition are LS-flows. We apply E-cohomology to index pairs of LS-flows and obtain...
-
On the existence of homoclinic type solutions of inhomogenous Lagrangian systems
PublikacjaWe study the existence of homoclinic type solutions for a class of inhomogenous Lagrangian systems with a potential satisfying the Ambrosetti-Rabinowitz superquadratic growth condition and a square integrable forcing term. A homoclinic type solution is obtained as a limit of periodic solutions of an approximative sequence of second order differential equations.
-
Similarities and Differences Between the Vertex Cover Number and the Weakly Connected Domination Number of a Graph
PublikacjaA vertex cover of a graph G = (V, E) is a set X ⊂ V such that each edge of G is incident to at least one vertex of X. The ve cardinality of a vertex cover of G. A dominating set D ⊆ V is a weakly connected dominating set of G if the subgraph G[D]w = (N[D], Ew) weakly induced by D, is connected, where Ew is the set of all edges having at least one vertex in D. The weakly connected domination number γw(G) of G is the minimum cardinality...
-
Stability by linear approximation for time scale dynamical systems
PublikacjaWe study systems on time scales that are generalizations of classical differential or difference equations and appear in numerical methods. In this paper we consider linear systems and their small nonlinear perturbations. In terms of time scales and of eigenvalues of matrices we formulate conditions, sufficient for stability by linear approximation. For non-periodic time scales we use techniques of central upper Lyapunov exponents...
-
The Hopf type theorem for equivariant gradient local maps
PublikacjaWe construct a degree-type otopy invariant for equivariant gradient local maps in the case of a real finite-dimensional orthogonal representation of a compact Lie group. We prove that the invariant establishes a bijection between the set of equivariant gradient otopy classes and the direct sum of countably many copies of Z.
-
Visualization of short-term heart period variability with network tools as a method for quantifying autonomic drive
PublikacjaWe argue that network methods are successful in detecting nonlinear properties in the dynamics of autonomic nocturnal regulation in short-term variability. Two modes of visualization of networks constructed from RR-increments are proposed. The first is based on the handling of a state space. The state space of RR-increments can be modified by a bin size used to code a signal and by the role of a given vertex as the representation...
-
Weak forms of shadowing in topological dynamics
PublikacjaWe consider continuous maps of compact metric spaces. It is proved that every pseudotrajectory with sufficiently small errors contains a subsequence of positive density that is point-wise close to a subsequence of an exact trajectory with the same indices. Also, we study homeomor- phisms such that any pseudotrajectory can be shadowed by a finite number of exact orbits. In terms of numerical methods this property (we call it multishadowing)...
-
Wild oscillations in a nonlinear neuron model with resets: (I) Bursting, spike-adding and chaos
PublikacjaIn a series of two papers, we investigate the mechanisms by which complex oscillations are generated in a class of nonlinear dynamical systems with resets modeling the voltage and adaptation of neurons. This first paper presents mathematical analysis showing that the system can support bursts of any period as a function of model parameters, and that these are organized in a period-incrementing structure. In continuous dynamical...
-
Wild oscillations in a nonlinear neuron model with resets: (II) Mixed-mode oscillations
PublikacjaThis work continues the analysis of complex dynamics in a class of bidimensional nonlinear hybrid dynamical systems with resets modeling neuronal voltage dynamics with adaptation and spike emission. We show that these models can generically display a form of mixed-mode oscillations (MMOs), which are trajectories featuring an alternation of small oscillations with spikes or bursts (multiple consecutive spikes). The mechanism by...
Rok 2016
-
A high-accuracy complex-phase method of simulating X-ray propagation through a multi-lens system
PublikacjaThe propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. For solving the problem for an electromagnetic wave, a finite-difference method is applied. The error of simulation is analytically estimated and investigated. It was found that a very detailed difference grid is required for reliable and accurate calculations of the propagation of X-ray waves through a multi-lens...
-
A high-accuracy method of computation of x-ray waves propagation through an optical system consisting of many lenses
PublikacjaThe propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. Two differential equations are contemplated for solving the problem for electromagnetic wave propagation: first – an equation for the electric field, second – an equation derived for a complex phase of an electric field. Both equations are solved by the use of a finite-difference method. The simulation error is estimated...
-
A study of rigorous ODE integrators for multi-scale set-oriented computations
Publikacja -
Changes in gene methylation patterns in neonatal murine hearts: Implications for the regenerative potential
PublikacjaBackground The neonatal murine heart is able to regenerate after severe injury; this capacity however, quickly diminishes and it is lost within the first week of life. DNA methylation is an epigenetic mechanism which plays a crucial role in development and gene expression regulation. Under investigation here are the changes in DNA methylation and gene expression patterns which accompany the loss of regenerative potential. Results The...
-
Computation of Cubical Steenrod Squares
Publikacja -
Computing algebraic transfer entropy and coupling directions via transcripts
PublikacjaMost random processes studied in nonlinear time series analysis take values on sets endowed with a group structure, e.g., the real and rational numbers, and the integers. This fact allows to associate with each pair of group elements a third element, called their transcript, which is defined as the product of the second element in the pair times the first one. The transfer entropy of two such processes is called algebraic transfer...
-
Domination-Related Parameters in Rooted Product Graphs
PublikacjaAbstract A set S of vertices of a graph G is a dominating set in G if every vertex outside of S is adjacent to at least one vertex belonging to S. A domination parameter of G is related to those sets of vertices of a graph satisfying some domination property together with other conditions on the vertices of G. Here, we investigate several domination-related parameters in rooted product graphs.
-
Markov Model of Disease Development and Recovery
PublikacjaMarkov models are commonly used to simulate diseases and allow modeling of multiple health states and outcomes. Starting with the well known Le Bras multistate model (cascading failure model) with time-independent transitions we will see how simple Markov mortality models may be pressed into the service of survival and event history analysis. We will focus on more complex models which will be able to take into account remission,...
-
Minimal number of periodic points of smooth boundary-preserving self-maps of simply-connected manifolds
PublikacjaLet M be a smooth compact and simply-connected manifold with simply-connected boundary ∂M, r be a fixed odd natural number. We consider f, a C1 self-map of M, preserving ∂M . Under the assumption that the dimension of M is at least 4, we define an invariant Dr(f;M,∂M) that is equal to the minimal number of r-periodic points for all maps preserving ∂M and C1-homotopic to f. As an application, we give necessary and sufficient...
-
Periodic points of latitudinal maps of the $m$-dimensional sphere
PublikacjaLet f be a smooth self-map of the m-dimensional sphere Sm. Under the assumption that f preserves latitudinal foliations with the fibres S1, we estimate from below the number of fixed points of the iterates of f. The paper generalizes the results obtained by Pugh and Shub and by Misiurewicz.