Accurate Lightweight Calibration Methods for Mobile Low-Cost Particulate Matter Sensors - Publikacja - MOST Wiedzy

Wyszukiwarka

Accurate Lightweight Calibration Methods for Mobile Low-Cost Particulate Matter Sensors

Abstrakt

Monitoring air pollution is a critical step towards improving public health, particularly when it comes to identifying the primary air pollutants that can have an impact on human health. Among these pollutants, particulate matter (PM) with a diameter of up to 2.5 μ m (or PM2.5) is of particular concern, making it important to continuously and accurately monitor pollution related to PM. The emergence of mobile low-cost PM sensors has made it possible to monitor PM levels continuously in a greater number of locations. However, the accuracy of mobile low-cost PM sensors is often questionable as it depends on geographical factors such as local atmospheric conditions. This paper presents new calibration methods for mobile low-cost PM sensors that can correct inaccurate measurements from the sensors in real-time. Our new methods leverage Neural Architecture Search (NAS) to improve the accuracy and efficiency of calibration models for mobile low-cost PM sensors. The experimental evaluation shows that the new methods reduce accuracy error by more than 26% compared with the state-of-the-art methods. Moreover, the new methods are lightweight, taking less than 2.5 ms to correct each PM measurement on Intel Neural Compute Stick 2, an AI-accelerator for edge devices deployed in air pollution monitoring platforms.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Autorzy (6)

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język:
angielski
Rok wydania:
2023
Opis bibliograficzny:
Jørstad P., Wójcikowski M., Cao T., Lepioufle J., Wojtkiewicz K., Ha P. H.: Accurate Lightweight Calibration Methods for Mobile Low-Cost Particulate Matter Sensors// / : , 2023, s.248-260
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/978-981-99-5834-4_20
Źródła finansowania:
Weryfikacja:
Politechnika Gdańska

wyświetlono 63 razy

Publikacje, które mogą cię zainteresować

Meta Tagi