Abstrakt
In this work, we investigate exemplar-free class incremental learning (CIL) with knowledge distillation (KD) as a regularization strategy, aiming to prevent forgetting. KDbased methods are successfully used in CIL, but they often struggle to regularize the model without access to exemplars of the training data from previous tasks. Our analysis reveals that this issue originates from substantial representation shifts in the teacher network when dealing with outof-distribution data. This causes large errors in the KD loss component, leading to performance degradation in CIL models. Inspired by recent test-time adaptation methods, we introduce Teacher Adaptation (TA), a method that concurrently updates the teacher and the main models during incremental training. Our method seamlessly integrates with KD-based CIL approaches and allows for consistent enhancement of their performance across multiple exemplar-free CIL benchmarks. The source code for our method is available at https://github.com/fszatkowski/cl-teacher-adaptation.
Autorzy (6)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Język:
- angielski
- Rok wydania:
- 2024
- Opis bibliograficzny:
- Szatkowski F., Pyła M., Przewięźlikowski M., Cygert S., Twardowski B., Trzciński T.: Adapt Your Teacher: Improving Knowledge Distillation for Exemplar-free Continual Learning// / : , 2024,
- Źródła finansowania:
-
- IDEAS NCBR
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 135 razy
Publikacje, które mogą cię zainteresować
Category Adaptation Meets Projected Distillation in Generalized Continual Category Discovery
- G. Rypeść,
- D. Marczak,
- S. Cygert
- + 2 autorów
MagMax: Leveraging Model Merging for Seamless Continual Learning
- D. Marczak,
- B. Twardowski,
- T. Trzciński
- + 1 autorów
Looking through the past: better knowledge retention for generative replay in continual learning
- V. Khan,
- S. Cygert,
- K. Deja
- + 2 autorów
Divide and not forget: Ensemble of selectively trained experts in Continual Learning
- G. Rypeść,
- S. Cygert,
- V. Khan
- + 3 autorów