Abstrakt
The vulnerability of the speaker identity verification system to attacks using voice cloning was examined. The research project assumed creating a model for verifying the speaker’s identity based on voice biometrics and then testing its resistance to potential attacks using voice cloning. The Deep Speaker Neural Speaker Embedding System was trained, and the Real-Time Voice Cloning system was employed based on the SV2TTS, Tacotron, WaveRNN, and GE2E neural networks. The results of attacks using voice cloning were analyzed and discussed in the context of a subjective assessment of cloned voice fidelity. Subjective test results and attempts to authenticate speakers proved that the tested biometric identity verification system might resist voice cloning attacks even if humans cannot distinguish cloned samples from original ones.
Cytowania
-
3
CrossRef
-
0
Web of Science
-
3
Scopus
Autorzy (3)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/electronics12214458
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
Electronics
nr 12,
ISSN: 2079-9292 - Język:
- angielski
- Rok wydania:
- 2023
- Opis bibliograficzny:
- Milewski K., Zaporowski S., Czyżewski A.: Comparison of the Ability of Neural Network Model and Humans to Detect a Cloned Voice// Electronics -Vol. 12,iss. 21 (2023), s.4458-
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/electronics12214458
- Źródła finansowania:
-
- POIR.01.01.01-0092/19, BIOPUAP—a biometric cloud authentication system
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 107 razy
Publikacje, które mogą cię zainteresować
Speaker Recognition Using Convolutional Neural Network with Minimal Training Data for Smart Home Solutions
- M. Wang,
- T. Sirlapu,
- A. Kwaśniewska
- + 3 autorów