Comparison of the Ability of Neural Network Model and Humans to Detect a Cloned Voice - Publikacja - MOST Wiedzy

Wyszukiwarka

Comparison of the Ability of Neural Network Model and Humans to Detect a Cloned Voice

Abstrakt

The vulnerability of the speaker identity verification system to attacks using voice cloning was examined. The research project assumed creating a model for verifying the speaker’s identity based on voice biometrics and then testing its resistance to potential attacks using voice cloning. The Deep Speaker Neural Speaker Embedding System was trained, and the Real-Time Voice Cloning system was employed based on the SV2TTS, Tacotron, WaveRNN, and GE2E neural networks. The results of attacks using voice cloning were analyzed and discussed in the context of a subjective assessment of cloned voice fidelity. Subjective test results and attempts to authenticate speakers proved that the tested biometric identity verification system might resist voice cloning attacks even if humans cannot distinguish cloned samples from original ones.

Cytowania

  • 3

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Electronics nr 12,
ISSN: 2079-9292
Język:
angielski
Rok wydania:
2023
Opis bibliograficzny:
Milewski K., Zaporowski S., Czyżewski A.: Comparison of the Ability of Neural Network Model and Humans to Detect a Cloned Voice// Electronics -Vol. 12,iss. 21 (2023), s.4458-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/electronics12214458
Źródła finansowania:
  • POIR.01.01.01-0092/19, BIOPUAP—a biometric cloud authentication system
Weryfikacja:
Politechnika Gdańska

wyświetlono 107 razy

Publikacje, które mogą cię zainteresować

Meta Tagi