Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis - Publikacja - MOST Wiedzy

Wyszukiwarka

Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis

Abstrakt

The significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic (EM) simulation models. Surrogate-assisted methods offer acceleration, yet constructing reliable metamodels is hindered in higher-dimensional spaces and systems with highly nonlinear characteristics. This work suggests an innovative technique for global antenna optimization embedded within a machine-learning framework. It involves iteratively refined kriging surrogates and particle swarm optimization for generating infill points. The search process operates within a reduced-dimensionality region established through fast global sensitivity analysis. Domain confinement enables the creation of accurate behavioral models using limited training data, resulting in low CPU costs for optimization. Additional savings are realized by employing variable-resolution EM simulations, where low-fidelity models are utilized during the global search stage (including sensitivity analysis), and high-fidelity ones are reserved for final (gradient-based) tuning of antenna parameters. Comprehensive verification demonstrates the consistent performance of the proposed procedure, its superiority over benchmark techniques, and the relevance of the mechanisms embedded into the algorithm for enhancing search process reliability, design quality, and computational efficiency.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Scientific Reports nr 14,
ISSN: 2045-2322
Język:
angielski
Rok wydania:
2024
Opis bibliograficzny:
Pietrenko-Dąbrowska A., Kozieł S.: Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis// Scientific Reports -Vol. 14, (2024), s.1-23
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1038/s41598-024-77367-w
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 18 razy

Publikacje, które mogą cię zainteresować

Meta Tagi