Search results for: DYSARTHRIA DETECTION, SPEECH RECOGNITION, SPEECH SYNTHESIS, INTERPRETABLE DEEP LEARNING MODELS - Bridge of Knowledge

Search

Search results for: DYSARTHRIA DETECTION, SPEECH RECOGNITION, SPEECH SYNTHESIS, INTERPRETABLE DEEP LEARNING MODELS

Search results for: DYSARTHRIA DETECTION, SPEECH RECOGNITION, SPEECH SYNTHESIS, INTERPRETABLE DEEP LEARNING MODELS

  • Deep neural networks for data analysis

    e-Learning Courses
    • K. Draszawka

    The aim of the course is to familiarize students with the methods of deep learning for advanced data analysis. Typical areas of application of these types of methods include: image classification, speech recognition and natural language understanding. Celem przedmiotu jest zapoznanie studentów z metodami głębokiego uczenia maszynowego na potrzeby zaawansowanej analizy danych. Do typowych obszarów zastosowań tego typu metod należą:...

  • Biometria i przetwarzanie mowy 2023

    e-Learning Courses
    • J. Daciuk

    {mlang pl} Celem kursu jest zapoznanie studentów z: metodami ustalania i potwierdzania tożsamości ludzi na podstawie mierzalnych cech organizmu cechami mowy ludzkiej, w szczególności polskiej metodami rozpoznawania mowy metodami syntezy mowy {mlang} {mlang en} The aim of the course is to familiarize the students with: methods of identification and verification of identity of people based on measurable features of their...

  • Biometria i przetwarzanie mowy 2024

    e-Learning Courses
    • J. Daciuk

    {mlang pl} Celem kursu jest zapoznanie studentów z: metodami ustalania i potwierdzania tożsamości ludzi na podstawie mierzalnych cech organizmu cechami mowy ludzkiej, w szczególności polskiej metodami rozpoznawania mowy metodami syntezy mowy {mlang} {mlang en} The aim of the course is to familiarize the students with: methods of identification and verification of identity of people based on measurable features of their...

  • Deep neural networks for data analysis 24/25

    e-Learning Courses
    • J. Cychnerski
    • K. Draszawka

    This course covers introduction to supervised machine learning, construction of basic artificial deep neural networks (DNNs) and basic training algorithms, as well as the overview of popular DNNs architectures (convolutional networks, recurrent networks, transformers). The course introduces students to popular regularization techniques for deep models. Besides theory, large part of the course is the project in which students apply...