Didn't find any results in this catalog!
But we have some results in other catalogs.Filters
total: 591
-
Catalog
Search results for: THERMAL SELF-ACTION OF ACTION
-
About Unusual Diffraction and Thermal Self-Action of Magnetosonic Beam
PublicationThe dynamics of slightly diverging two-dimensional beams whose direction forms a constant angle θ with the equilibrium straight magnetic strength is considered. The approximate dispersion relations and corresponding links which specify hydrodynamic perturbations in confined beams are derived. The study is dedicated to the diffraction of a magnetosonic beam and nonlinear thermal self-action of a beam in a thermoconducting gaseous plasma....
-
Thermal Self-Action of Acoustic Beams Containing Several Shock Fronts
PublicationThermal self-action of an acoustic beam with one discontinuity or several shock fronts is studied in a Newtonian fluid. The stationary self-action of a single sawtooth wave with discontinuity (or some integer number of these waves), symmetric or asymmetric, is considered in the cases of self-focusing and self- defocusing media. The results are compared with the non-stationary thermal self-action of the periodic sound. Thermal self-action...
-
Thermal self-action effects of acoustic beam in a vibrationally relaxing gas
PublicationThermal self-action of acoustic beam in a molecular gas with excited internal degrees of molecules’ freedom, is studied. This kind of thermal self-action differs from that in a Newtonian fluid. Heating or cooling of a medium takes place due to transfer of internal vibrational energy. Equilibrium and non-equilibrium gases, which may be acoustically active, are considered. A beam in an acoustically active gas is self-focusing unlike...
-
Thermal self-action effects for acoustic beams containing fronts in a Maxwell relaxing fluid
PublicationThis paper examines the thermal self-action of acoustic beams in a Maxwell relaxing fluid. This type of thermal self-action differs from that in a Newtonian fluid and behaves differently depending on a ratio of sound period and time of thermodynamic relaxation. The self-action which relates to sound beams containing shock fronts is also discussed. In addition, stationary and non-stationary types of self-action are considered.
-
Thermal Self-Action Effects of Acoustic Beam in a Gas with Reversible or Irreversible Chemical Reaction
PublicationThermal self-action of acoustic beam in a gas where an exothermic chemical reaction takes place, is studied. This kind of thermal self-action differs from that in a newtonian fluid. In dependence on the type of a chemical reaction, reversible or not, heating or cooling of a medium occurs. A beam in the case of the irreversible reaction may be unusually self-focusing. The self-action effects relating to wave beams containing shock...
-
NON-STATIONARY THERMAL SELF-ACTION OF ACOUSTIC BEAMS CONTAINING SHOCK FRONTS IN THERMOCONDUCTING FLUID
PublicationNon-stationary thermal self-action of a periodic or impulse acoustic beam containing shock fronts in a thermoconducting Newtonian fluid is studied. Self-focusing of a saw-tooth periodic and impulse sound is considered, as well as that of a solitary shock wave which propagates with the linear sound speed. The governing equations of the beam radius are derived. Numerical simulations reveal that the thermal conductivity weakens the...
-
Expansion of the self of activists and nonactivists involved in mass gatherings for collective action
Publication -
Study of pozzolanic action of ground waste expanded perlite by means of thermal methods
Publication -
What do I gain from joining crowds? Does self-expansion help to explain the relationship between identity fusion, group efficacy and collective action?
Publication -
Unusual dynamics and nonlinear thermal self-focusing of initially focused magnetoacoustic beams in a plasma
PublicationUnusual thermal self-focusing of two-dimensional beams in plasma which axis is parallel to the equilibrium straight magnetic field is considered. The equi- librium parameters of plasma determine scenario of a beam divergence (usual or unusual) which is stronger as compared with a flow without magnetic field. Nonlinear thermal self-action of a magnetosonic beam behaves differently in the ordinary and unusual cases. Damping of wave...