Filters
total: 1290
filtered: 73
Search results for: MULTITHREADED PROGRAMMING FRAMEWORK
-
Uniform expansion estimates in the quadratic map with the smallest critical neighborhood for which the expansion exponent λ0 is positive
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the partition size, computing λ only
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the partition size, using the “derivative” partition type
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the cubic map as a function of the parameter
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map with the smallest critical neighborhood for which the expansion exponent λ is positive
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the critical neighborhood size
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the partition size, using the “critical” partition type
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the parameter, using the “uniform” partition type
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the partition size, using the Floyd–Warshall algorithm
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the parameter, using the “critical” partition type
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the parameter, using the “derivative” partition type
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map with the smallest critical neighborhood for which the expansion exponent λ0 is greater than 0.1
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the unimodal map with γ=1.5 as a function of the parameter
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the parameter, with a small critical neighborhood
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the unimodal map with γ=2.5 as a function of the parameter
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map with the smallest critical neighborhood for which the expansion exponent λ is greater than 0.1
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Conley-Morse graphs for a two-dimensional discrete neuron model (low resolution)
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper “Topological-numerical analysis of a two-dimensional discrete neuron model” by Paweł Pilarczyk, Justyna Signerska-Rynkowska and Grzegorz Graff. A preprint of this paper is available at https://doi.org/10.48550/arXiv.2209.03443.
-
Conley-Morse graphs for a two-dimensional discrete neuron model (limited range)
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper “Topological-numerical analysis of a two-dimensional discrete neuron model” by Paweł Pilarczyk, Justyna Signerska-Rynkowska and Grzegorz Graff. A preprint of this paper is available at https://doi.org/10.48550/arXiv.2209.03443.
-
Conley-Morse graphs for a two-dimensional discrete neuron model (full range)
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper “Topological-numerical analysis of a two-dimensional discrete neuron model” by Paweł Pilarczyk, Justyna Signerska-Rynkowska and Grzegorz Graff. A preprint of this paper is available at https://doi.org/10.48550/arXiv.2209.03443.
-
Numerical Study of the Impinging Jets Formed by an Injector with Different Nozzle Diameters
Open Research DataThe data set contains the simulation files related to the research paper “Numerical Study of the Impinging Jets Formed by an Injector with Different Nozzle Diameters”, https://doi.org/10.4271/2022-01-1080.
-
Continuation classes for a two-patch vaccination model
Open Research DataThis dataset contains selected results of rigorous numerical computations described in Section 5 of the paper "Rich bifurcation structure in a two-patch vaccination model" by D.H. Knipl, P. Pilarczyk, G. Röst, published in SIAM Journal on Applied Dynamical Systems (SIADS), Vol. 14, No. 2 (2015), pp. 980–1017, doi: 10.1137/140993934.
-
Morse decompositions for a two-patch vaccination model
Open Research DataThis dataset contains selected results of rigorous numerical computations described in Section 5 of the paper "Rich bifurcation structure in a two-patch vaccination model" by D.H. Knipl, P. Pilarczyk, G. Röst, published in SIAM Journal on Applied Dynamical Systems (SIADS), Vol. 14, No. 2 (2015), pp. 980–1017, doi: 10.1137/140993934.
-
Conley-Morse graphs for a two-patch vaccination model
Open Research DataThis dataset contains selected results of rigorous numerical computations described in Section 5 of the paper "Rich bifurcation structure in a two-patch vaccination model" by D.H. Knipl, P. Pilarczyk, G. Röst, published in SIAM Journal on Applied Dynamical Systems (SIADS), Vol. 14, No. 2 (2015), pp. 980–1017, doi: 10.1137/140993934.