Search results for: COMBINATORIAL BOUND - Bridge of Knowledge

Search

Search results for: COMBINATORIAL BOUND

Filters

total: 6
filtered: 4

clear all filters


Chosen catalog filters

  • Category

  • Year

  • Options

clear Chosen catalog filters disabled

Search results for: COMBINATORIAL BOUND

  • Normal-form preemption sequences for an open problem in scheduling theory

    Publication

    - JOURNAL OF SCHEDULING - Year 2016

    Structural properties of optimal preemptive schedules have been studied in a number of recent papers with a primary focus on two structural parameters: the minimum number of preemptions necessary, and a tight lower bound on shifts, i.e., the sizes of intervals bounded by the times created by preemptions, job starts, or completions. These two parameters have been investigated for a large class of preemptive scheduling problems,...

    Full text available to download

  • Computational aspects of greedy partitioning of graphs

    In this paper we consider a variant of graph partitioning consisting in partitioning the vertex set of a graph into the minimum number of sets such that each of them induces a graph in hereditary class of graphs P (the problem is also known as P-coloring). We focus on the computational complexity of several problems related to greedy partitioning. In particular, we show that given a graph G and an integer k deciding if the greedy...

    Full text available to download

  • Minimal double dominating sets in trees

    Publication

    - Year 2014

    We provide an algorithm for listing all minimal double dominating sets of a tree of order $n$ in time $\mathcal{O}(1.3248^n)$. This implies that every tree has at most $1.3248^n$ minimal double dominating sets. We also show that this bound is tight.

  • An algorithm for listing all minimal double dominating sets of a tree

    Publication

    We provide an algorithm for listing all minimal double dominating sets of a tree of order $n$ in time $\mathcal{O}(1.3248^n)$. This implies that every tree has at most $1.3248^n$ minimal double dominating sets. We also show that this bound is tight.

    Full text to download in external service