Filters
total: 9
Search results for: ATP SYNTHASE
-
Molecular Determinants of Proton Transfer in ATP Synthase FO Complex
Publication -
Determinants of Directionality and Efficiency of the ATP Synthase Fo Motor at Atomic Resolution
PublicationFo subcomplex of ATP synthase is a membrane-embedded rotary motor that converts proton motive force into mechanical energy. Despite a rapid increase in the number of high-resolution structures, the mechanism of tight coupling between proton transport and motion of the rotary c-ring remains elusive. Here, using extensive all-atom free energy simulations, we show how the motor’s directionality naturally arises from the interplay...
-
Keep It Flexible: Driving Macromolecular Rotary Motions in Atomistic Simulations with GROMACS
PublicationWe describe a versatile method to enforce the rotation of subsets of atoms, e.g., a protein subunit, in molecular dynamics (MD) simulations. In particular, we introduce a “flexible axis” technique that allows realistic flexible adaptions of both the rotary subunit as well as the local rotation axis during the simulation. A variety of useful rotation potentials were implemented for the GROMACS 4.5 MD package. Application to the...
-
Mechanochemical Energy Transduction during the Main Rotary Step in the Synthesis Cycle of F1-ATPase
PublicationF1-ATPase is a highly efficient molecular motor that can synthesize ATP driven by a mechanical torque. Its ability to function reversibly in either direction requires tight mechanochemical coupling between the catalytic domain and the rotating central shaft, as well as temporal control of substrate binding and product release. Despite great efforts and significant progress, the molecular details of this synchronized and fine-tuned...
-
Rotation Triggers Nucleotide-Independent Conformational Transition of the Empty β Subunit of F1-ATPase
PublicationF1-ATPase (F1) is the catalytic portion of ATP synthase, a rotary motor protein that couples proton gradients to ATP synthesis. Driven by a proton flux, the F1 asymmetric γ subunit undergoes a stepwise rotation inside the α3β3 headpiece and causes the β subunits’ binding sites to cycle between states of different affinity for nucleotides. These concerted transitions drive the synthesis of ATP from ADP and phosphate. Here, we study...
-
Low-Barrier Hydrogen Bond Determines Target-Binding Affinity and Specificity of the Antitubercular Drug Bedaquiline
PublicationThe role of short strong hydrogen bonds (SSHB) in ligand-target binding remains largely unexplored, thereby hin- dering a potentially important avenue in the rational drug de- sign. Here, we investigate the interaction between bedaquiline (Bq), a potent anti-tuberculosis drug, and the mycobacterial ATP synthase, to unravel the role of a specific hydrogen bond to a conserved acidic residue in the target affinity and specificity....
-
Molecular mechanism and energetics of coupling between substrate binding and product release in the F 1 -ATPase catalytic cycle
PublicationF1-ATPase is a motor protein that couples the rotation of its rotary γ subunit with ATP synthesis or hydrolysis. Single-molecule experiments indicate that nucleotide binding and release events occur almost simultaneously during the synthesis cycle, allowing the energy gain due to spontaneous binding of ADP to one catalytic β subunit to be directly harnessed for driving the release of ATP from another rather than being dissipated...
-
Torsional elasticity and energetics of F1-ATPase
PublicationFoF1-ATPase is a rotary motor protein synthesizing ATP from ADP driven by a cross-membrane proton gradient. The proton flow through the membrane-embedded Fo generates the rotary torque that drives the rotation of the asymmetric shaft of F1. Mechanical energy of the rotating shaft is used by the F1 catalytic subunit to synthesize ATP. It was suggested that elastic power transmission with transient storage of energy in some compliant...
-
Joanna Słabońska
People