Filters
total: 2476
filtered: 329
Search results for: vertical graphene
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 135 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
The radiated immunity test of an astable multivibrator for various supply voltages
Open Research DataThe dataset presents a result of measurements that are a part of electromagnetic field immunity tests. The radiated, radio frequency, immunity tests were carried out for a typical astable electronic multivibrator supplied from a power supply with an output voltage of 6V and 7.5 V. Tests of immunity of electronic systems to radiated radio frequency (RF)...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K01
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate folders).Specimen...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K09 - full run
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K06
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K04
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate folders).Specimen...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K09 - pre-run (10s)
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K08
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K07
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K05
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate folders).Specimen...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K02
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K03
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate folders).Specimen...